{"title":"人类活动可持续地融入全球生态系统","authors":"P. Lorge","doi":"10.1557/mre.2020.27","DOIUrl":null,"url":null,"abstract":"The sustainable integration of human activities into the global ecosystem is discussed, pointing out fatal anthropogenic heat as a major ecological problem and proposing global technical and economical solutions. For human sake, we must get out of the “thermal age” and implement the “electroprotonic era” as soon as possible. Contrary to thermal power, electroprotonic is sustainable and can be produced by photoenzymatic systems, a cheap way to produce hydrogen (H_2) or ammonia (NH_3). We can accelerate the advent of this new era if we re-integrate external costs generated by thermal energies into their final prices. The author is leading the H2GREEN project in Belgium as an entrepreneur for more than a decade, which develops the photoenzymatic production of dihydrogen from water. The aim of the H2GREEN project is to contribute to the launch of a low-cost, renewable Hydrogen-based local economy as an energy carrier. Among the difficulties of this launch, the most important is certainly the lack of competitiveness due to the unfair competition of carbon products that externalizes their costs (CO_2, oil spills, lethal pollution, armed conflicts, political oppression, foreign dependence, etc.).","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":" ","pages":"1-9"},"PeriodicalIF":3.3000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1557/mre.2020.27","citationCount":"2","resultStr":"{\"title\":\"Sustainable integration of human activities into the global ecosystem\",\"authors\":\"P. Lorge\",\"doi\":\"10.1557/mre.2020.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sustainable integration of human activities into the global ecosystem is discussed, pointing out fatal anthropogenic heat as a major ecological problem and proposing global technical and economical solutions. For human sake, we must get out of the “thermal age” and implement the “electroprotonic era” as soon as possible. Contrary to thermal power, electroprotonic is sustainable and can be produced by photoenzymatic systems, a cheap way to produce hydrogen (H_2) or ammonia (NH_3). We can accelerate the advent of this new era if we re-integrate external costs generated by thermal energies into their final prices. The author is leading the H2GREEN project in Belgium as an entrepreneur for more than a decade, which develops the photoenzymatic production of dihydrogen from water. The aim of the H2GREEN project is to contribute to the launch of a low-cost, renewable Hydrogen-based local economy as an energy carrier. Among the difficulties of this launch, the most important is certainly the lack of competitiveness due to the unfair competition of carbon products that externalizes their costs (CO_2, oil spills, lethal pollution, armed conflicts, political oppression, foreign dependence, etc.).\",\"PeriodicalId\":44802,\"journal\":{\"name\":\"MRS Energy & Sustainability\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1557/mre.2020.27\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Energy & Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1557/mre.2020.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/mre.2020.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Sustainable integration of human activities into the global ecosystem
The sustainable integration of human activities into the global ecosystem is discussed, pointing out fatal anthropogenic heat as a major ecological problem and proposing global technical and economical solutions. For human sake, we must get out of the “thermal age” and implement the “electroprotonic era” as soon as possible. Contrary to thermal power, electroprotonic is sustainable and can be produced by photoenzymatic systems, a cheap way to produce hydrogen (H_2) or ammonia (NH_3). We can accelerate the advent of this new era if we re-integrate external costs generated by thermal energies into their final prices. The author is leading the H2GREEN project in Belgium as an entrepreneur for more than a decade, which develops the photoenzymatic production of dihydrogen from water. The aim of the H2GREEN project is to contribute to the launch of a low-cost, renewable Hydrogen-based local economy as an energy carrier. Among the difficulties of this launch, the most important is certainly the lack of competitiveness due to the unfair competition of carbon products that externalizes their costs (CO_2, oil spills, lethal pollution, armed conflicts, political oppression, foreign dependence, etc.).