{"title":"为可再生建筑环境制定可行翻新策略的生成计算工作流:以谢菲尔德为例","authors":"Hang Xu, Tsung-Hsien Wang","doi":"10.1177/14780771231180258","DOIUrl":null,"url":null,"abstract":"Urban building energy modelling (UBEM) is a prevalent research method to examine the multi-scale building to urban renovation in mitigating global energy-related carbon emissions. However, only a few studies delineate a complete workflow from generation to application using UBEM. In particular, to facilitate the designing of sustainable built environments, existing research needs to emphasize the integration of multi-scale energy performance evaluation within the design development process for architects and urban planners. The key challenges lie in the need for integrated datasets and incompatibility between software tools required for designing, modelling, and evaluation. This paper presents a comprehensive methodological framework to investigate applicable urban decarbonization strategies. A case study of Sheffield in the UK demonstrates the development of an automated and standardized computational workflow. This data-driven workflow aims to evaluate energy demand and supply scenarios at an urban scale to access the potential of decarbonizing built environments. The workflow is designed to be adaptable to various scales of urban regions, given a suitable geographic information system (GIS) dataset.","PeriodicalId":45139,"journal":{"name":"International Journal of Architectural Computing","volume":"21 1","pages":"516 - 535"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A generative computational workflow to develop actionable renovation strategies for renewable built environments: A case study of Sheffield\",\"authors\":\"Hang Xu, Tsung-Hsien Wang\",\"doi\":\"10.1177/14780771231180258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban building energy modelling (UBEM) is a prevalent research method to examine the multi-scale building to urban renovation in mitigating global energy-related carbon emissions. However, only a few studies delineate a complete workflow from generation to application using UBEM. In particular, to facilitate the designing of sustainable built environments, existing research needs to emphasize the integration of multi-scale energy performance evaluation within the design development process for architects and urban planners. The key challenges lie in the need for integrated datasets and incompatibility between software tools required for designing, modelling, and evaluation. This paper presents a comprehensive methodological framework to investigate applicable urban decarbonization strategies. A case study of Sheffield in the UK demonstrates the development of an automated and standardized computational workflow. This data-driven workflow aims to evaluate energy demand and supply scenarios at an urban scale to access the potential of decarbonizing built environments. The workflow is designed to be adaptable to various scales of urban regions, given a suitable geographic information system (GIS) dataset.\",\"PeriodicalId\":45139,\"journal\":{\"name\":\"International Journal of Architectural Computing\",\"volume\":\"21 1\",\"pages\":\"516 - 535\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Architectural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14780771231180258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Architectural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14780771231180258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
A generative computational workflow to develop actionable renovation strategies for renewable built environments: A case study of Sheffield
Urban building energy modelling (UBEM) is a prevalent research method to examine the multi-scale building to urban renovation in mitigating global energy-related carbon emissions. However, only a few studies delineate a complete workflow from generation to application using UBEM. In particular, to facilitate the designing of sustainable built environments, existing research needs to emphasize the integration of multi-scale energy performance evaluation within the design development process for architects and urban planners. The key challenges lie in the need for integrated datasets and incompatibility between software tools required for designing, modelling, and evaluation. This paper presents a comprehensive methodological framework to investigate applicable urban decarbonization strategies. A case study of Sheffield in the UK demonstrates the development of an automated and standardized computational workflow. This data-driven workflow aims to evaluate energy demand and supply scenarios at an urban scale to access the potential of decarbonizing built environments. The workflow is designed to be adaptable to various scales of urban regions, given a suitable geographic information system (GIS) dataset.