{"title":"土壤保水带边界区土壤水分转移的实例研究","authors":"","doi":"10.1016/j.inpa.2023.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Plant growth monitoring techniques are of great interest to agricultural engineering. The interaction between root and soil water is one important plant response to environmental variations. This paper aims to develop a new method to estimate plant biological response using root-soil water interaction. It provides a case study on moisture transfer at the boundary area of a soil water retention zone (SWRZ). We produced a SWRZ around growing roots of a cultivated tomato plant in homogenous dried soil using water-saving drip irrigation. The irrigation was designed to supply moisture only in the root zone to meet the minimum need of plant growth. High-resolution soil moisture sensors were used to detect moisture transfer at the boundary area of the SWRZ. We applied frequency analysis to the acquired vibration spectrum using filtering and Fast Fourier Transform (FFT) in order to investigate the frequency content at each sensor location. Distinct frequencies of moisture vibration were identified at the boundary area of the SWRZ which indicated water transfer to the roots caused by plant water absorption. A mechanical vibration model was proposed to describe this phenomenon. The pinpoint irrigation to the root zone in the water-saving cultivation method enabled a well-structured spherical root system to form via hydrotropism. This enabled a simple method to analyze moisture transfer based on a mechanical vibration model. The results suggest a new method to estimate plant biological response by studying root-soil water interaction.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 372-384"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000495/pdfft?md5=9ee982b0952f86fbbf84e2b5c866da5e&pid=1-s2.0-S2214317323000495-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Soil moisture transfer at the boundary area of soil water retention zone: A case study\",\"authors\":\"\",\"doi\":\"10.1016/j.inpa.2023.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plant growth monitoring techniques are of great interest to agricultural engineering. The interaction between root and soil water is one important plant response to environmental variations. This paper aims to develop a new method to estimate plant biological response using root-soil water interaction. It provides a case study on moisture transfer at the boundary area of a soil water retention zone (SWRZ). We produced a SWRZ around growing roots of a cultivated tomato plant in homogenous dried soil using water-saving drip irrigation. The irrigation was designed to supply moisture only in the root zone to meet the minimum need of plant growth. High-resolution soil moisture sensors were used to detect moisture transfer at the boundary area of the SWRZ. We applied frequency analysis to the acquired vibration spectrum using filtering and Fast Fourier Transform (FFT) in order to investigate the frequency content at each sensor location. Distinct frequencies of moisture vibration were identified at the boundary area of the SWRZ which indicated water transfer to the roots caused by plant water absorption. A mechanical vibration model was proposed to describe this phenomenon. The pinpoint irrigation to the root zone in the water-saving cultivation method enabled a well-structured spherical root system to form via hydrotropism. This enabled a simple method to analyze moisture transfer based on a mechanical vibration model. The results suggest a new method to estimate plant biological response by studying root-soil water interaction.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"11 3\",\"pages\":\"Pages 372-384\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214317323000495/pdfft?md5=9ee982b0952f86fbbf84e2b5c866da5e&pid=1-s2.0-S2214317323000495-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317323000495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317323000495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Soil moisture transfer at the boundary area of soil water retention zone: A case study
Plant growth monitoring techniques are of great interest to agricultural engineering. The interaction between root and soil water is one important plant response to environmental variations. This paper aims to develop a new method to estimate plant biological response using root-soil water interaction. It provides a case study on moisture transfer at the boundary area of a soil water retention zone (SWRZ). We produced a SWRZ around growing roots of a cultivated tomato plant in homogenous dried soil using water-saving drip irrigation. The irrigation was designed to supply moisture only in the root zone to meet the minimum need of plant growth. High-resolution soil moisture sensors were used to detect moisture transfer at the boundary area of the SWRZ. We applied frequency analysis to the acquired vibration spectrum using filtering and Fast Fourier Transform (FFT) in order to investigate the frequency content at each sensor location. Distinct frequencies of moisture vibration were identified at the boundary area of the SWRZ which indicated water transfer to the roots caused by plant water absorption. A mechanical vibration model was proposed to describe this phenomenon. The pinpoint irrigation to the root zone in the water-saving cultivation method enabled a well-structured spherical root system to form via hydrotropism. This enabled a simple method to analyze moisture transfer based on a mechanical vibration model. The results suggest a new method to estimate plant biological response by studying root-soil water interaction.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining