{"title":"摩擦力和迟滞对具有线性和非线性减振器静态特性的四分之一汽车被动悬架动态响应的影响","authors":"Z. Klockiewicz, G. Ślaski","doi":"10.2478/ama-2023-0024","DOIUrl":null,"url":null,"abstract":"Abstract Vehicle passive suspensions consist of two major elements generating force – spring and passive damper. Both possess non-linear characteristics, which are quite often taken into account in simulations; however, the friction forces inside the hydraulic damper and the damping force’s hysteresis are usually left out. The researchers in this paper present the results of examination of the influence of using complex damper models – with friction and hysteresis; and with linear and non-linear static characteristics – on the chosen dynamic responses of a suspension system for excitations in the typical exploitation frequency range. The results from the simulation tests of the simplified and advanced versions of the damper model – different transfer functions and their relation to the reference model’s transfer functions – are compared. The main conclusion is that friction and hysteresis add extra force to the already existing damping force, acting similar to damping increase for the base static characteristics. But this increase is not linear – it is bigger for smaller frequencies than for higher frequencies. The research shows the importance of including non-linear characteristics and proposed modules in modelling passive dampers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Friction Force and Hysteresis on the Dynamic Responses of Passive Quarter-Car Suspension with Linear and Non-Linear Damper Static Characteristics\",\"authors\":\"Z. Klockiewicz, G. Ślaski\",\"doi\":\"10.2478/ama-2023-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Vehicle passive suspensions consist of two major elements generating force – spring and passive damper. Both possess non-linear characteristics, which are quite often taken into account in simulations; however, the friction forces inside the hydraulic damper and the damping force’s hysteresis are usually left out. The researchers in this paper present the results of examination of the influence of using complex damper models – with friction and hysteresis; and with linear and non-linear static characteristics – on the chosen dynamic responses of a suspension system for excitations in the typical exploitation frequency range. The results from the simulation tests of the simplified and advanced versions of the damper model – different transfer functions and their relation to the reference model’s transfer functions – are compared. The main conclusion is that friction and hysteresis add extra force to the already existing damping force, acting similar to damping increase for the base static characteristics. But this increase is not linear – it is bigger for smaller frequencies than for higher frequencies. The research shows the importance of including non-linear characteristics and proposed modules in modelling passive dampers.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ama-2023-0024\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Influence of Friction Force and Hysteresis on the Dynamic Responses of Passive Quarter-Car Suspension with Linear and Non-Linear Damper Static Characteristics
Abstract Vehicle passive suspensions consist of two major elements generating force – spring and passive damper. Both possess non-linear characteristics, which are quite often taken into account in simulations; however, the friction forces inside the hydraulic damper and the damping force’s hysteresis are usually left out. The researchers in this paper present the results of examination of the influence of using complex damper models – with friction and hysteresis; and with linear and non-linear static characteristics – on the chosen dynamic responses of a suspension system for excitations in the typical exploitation frequency range. The results from the simulation tests of the simplified and advanced versions of the damper model – different transfer functions and their relation to the reference model’s transfer functions – are compared. The main conclusion is that friction and hysteresis add extra force to the already existing damping force, acting similar to damping increase for the base static characteristics. But this increase is not linear – it is bigger for smaller frequencies than for higher frequencies. The research shows the importance of including non-linear characteristics and proposed modules in modelling passive dampers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.