迷失在翻译中:探索耐缺氧海龟的微小RNA生物发生和信使RNA命运

Sarah A. Breedon, K. Storey
{"title":"迷失在翻译中:探索耐缺氧海龟的微小RNA生物发生和信使RNA命运","authors":"Sarah A. Breedon, K. Storey","doi":"10.3390/oxygen2020017","DOIUrl":null,"url":null,"abstract":"Red-eared slider turtles face natural changes in oxygen availability throughout the year. This includes long-term anoxic brumation where they reduce their metabolic rate by ~90% for months at a time, which they survive without apparent tissue damage. This metabolic rate depression (MRD) is underlaid by various regulatory mechanisms, including messenger RNA (mRNA) silencing via microRNA (miRNA), leading to mRNA decay or translational inhibition in processing bodies (P-bodies) and stress granules. Regulation of miRNA biogenesis was assessed in red-eared slider turtle liver and skeletal muscle via immunoblotting. Hepatic miRNA biogenesis was downregulated in early processing steps, while later steps were upregulated. These contradictory findings indicate either overall decreased miRNA biogenesis, or increased biogenesis if sufficient pre-miRNA stores were produced in early anoxia. Conversely, muscle showed clear upregulation of multiple biogenesis steps indicating increased miRNA production. Additionally, immunoblotting indicated that P-bodies may be favoured by the liver for mRNA storage/decay during reoxygenation with a strong suppression of stress granule proteins in anoxia and reoxygenation. Muscle however showed downregulation of P-bodies during anoxia and reoxygenation, and upregulation of stress granules for mRNA storage during reoxygenation. This study advances our understanding of how these champion anaerobes regulate miRNA biogenesis to alter miRNA expression and mRNA fate during prolonged anoxia.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lost in Translation: Exploring microRNA Biogenesis and Messenger RNA Fate in Anoxia-Tolerant Turtles\",\"authors\":\"Sarah A. Breedon, K. Storey\",\"doi\":\"10.3390/oxygen2020017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Red-eared slider turtles face natural changes in oxygen availability throughout the year. This includes long-term anoxic brumation where they reduce their metabolic rate by ~90% for months at a time, which they survive without apparent tissue damage. This metabolic rate depression (MRD) is underlaid by various regulatory mechanisms, including messenger RNA (mRNA) silencing via microRNA (miRNA), leading to mRNA decay or translational inhibition in processing bodies (P-bodies) and stress granules. Regulation of miRNA biogenesis was assessed in red-eared slider turtle liver and skeletal muscle via immunoblotting. Hepatic miRNA biogenesis was downregulated in early processing steps, while later steps were upregulated. These contradictory findings indicate either overall decreased miRNA biogenesis, or increased biogenesis if sufficient pre-miRNA stores were produced in early anoxia. Conversely, muscle showed clear upregulation of multiple biogenesis steps indicating increased miRNA production. Additionally, immunoblotting indicated that P-bodies may be favoured by the liver for mRNA storage/decay during reoxygenation with a strong suppression of stress granule proteins in anoxia and reoxygenation. Muscle however showed downregulation of P-bodies during anoxia and reoxygenation, and upregulation of stress granules for mRNA storage during reoxygenation. This study advances our understanding of how these champion anaerobes regulate miRNA biogenesis to alter miRNA expression and mRNA fate during prolonged anoxia.\",\"PeriodicalId\":74387,\"journal\":{\"name\":\"Oxygen (Basel, Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxygen (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/oxygen2020017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxygen (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/oxygen2020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

红耳滑龟全年都面临着氧气供应量的自然变化。这包括长期缺氧的brumination,它们的代谢率一次降低约90%,持续数月,在没有明显组织损伤的情况下存活下来。这种代谢率降低(MRD)是由各种调节机制造成的,包括通过微小RNA(miRNA)沉默信使RNA(mRNA),导致加工体(P-体)和应激颗粒中的mRNA衰变或翻译抑制。通过免疫印迹法在红耳滑龟肝脏和骨骼肌中评估miRNA生物发生的调节。肝脏miRNA的生物发生在早期加工步骤中下调,而后期步骤则上调。这些相互矛盾的发现表明,如果在早期缺氧中产生足够的前miRNA储存,则miRNA生物发生总体减少,或生物发生增加。相反,肌肉显示出多个生物发生步骤的明显上调,表明miRNA的产生增加。此外,免疫印迹表明,在缺氧和复氧过程中,肝脏可能有利于P-体的mRNA储存/衰变,并强烈抑制应激颗粒蛋白。然而,在缺氧和复氧过程中,肌肉表现出P体的下调,在复氧期间,应激颗粒对mRNA储存的上调。这项研究加深了我们对这些冠军厌氧菌如何在长期缺氧期间调节miRNA生物发生以改变miRNA表达和mRNA命运的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lost in Translation: Exploring microRNA Biogenesis and Messenger RNA Fate in Anoxia-Tolerant Turtles
Red-eared slider turtles face natural changes in oxygen availability throughout the year. This includes long-term anoxic brumation where they reduce their metabolic rate by ~90% for months at a time, which they survive without apparent tissue damage. This metabolic rate depression (MRD) is underlaid by various regulatory mechanisms, including messenger RNA (mRNA) silencing via microRNA (miRNA), leading to mRNA decay or translational inhibition in processing bodies (P-bodies) and stress granules. Regulation of miRNA biogenesis was assessed in red-eared slider turtle liver and skeletal muscle via immunoblotting. Hepatic miRNA biogenesis was downregulated in early processing steps, while later steps were upregulated. These contradictory findings indicate either overall decreased miRNA biogenesis, or increased biogenesis if sufficient pre-miRNA stores were produced in early anoxia. Conversely, muscle showed clear upregulation of multiple biogenesis steps indicating increased miRNA production. Additionally, immunoblotting indicated that P-bodies may be favoured by the liver for mRNA storage/decay during reoxygenation with a strong suppression of stress granule proteins in anoxia and reoxygenation. Muscle however showed downregulation of P-bodies during anoxia and reoxygenation, and upregulation of stress granules for mRNA storage during reoxygenation. This study advances our understanding of how these champion anaerobes regulate miRNA biogenesis to alter miRNA expression and mRNA fate during prolonged anoxia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hypoxia in uterine fibroids: role in pathobiology and therapeutic opportunities. Mitochondrial Dysfunction and Nanocarrier-Based Treatments in Chronic Obstructive Pulmonary Disease (COPD) The Influence of the Atmospheric Electric Field on Soil Redox Potential The Kelch/Nrf2 Antioxidant System as a Target for Some Marine Fungal Metabolites Exploring the Impact of Training Methods on Repeated Sprints in Hypoxia Training Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1