锂电池在不可预知使用中的潜在危害研究

E.I. Khaliullina, E. Malysheva, E. Nasyrova, A. Elizaryev
{"title":"锂电池在不可预知使用中的潜在危害研究","authors":"E.I. Khaliullina, E. Malysheva, E. Nasyrova, A. Elizaryev","doi":"10.24000/0409-2961-2023-6-17-22","DOIUrl":null,"url":null,"abstract":"Lithium-based batteries are designed and manufactured in such a way as to ensure their safe operation under various conditions. If lithium batteries are misused or damaged, hazards such as fire or explosion may occur. According to the Russian regulations, the safety of lithium-based batteries is considered from two points of view. The first is intended use, i.e., according to the specifications and instructions. The second is improper use under conditions not intended by the manufacturer, but easily predictable. The article explored the third option - unpredictable use, including events from predictable misuse, but not separately, but in combination. In particular, a hazard may arise if a battery is punctured inside military or rescue communications equipment while on duty, or when charging phones after prolonged exposure to extreme temperatures. To study a new option for using lithium-based batteries for assessing their potential hazard, a laboratory device was created and patented with the possibility of a mechanical puncture of the battery. During the research, the following potential hazards were recorded: ignition, explosion, leakage of electrolyte from the battery, pressure release and rupture of the battery hull with the release of internal components. Five experiments were set up (separately for each object under study) on discharged batteries. It was established that even discharged batteries have potential hazards of electrolyte leakage from the object and rupture of the hull with the release of internal components.","PeriodicalId":35650,"journal":{"name":"Bezopasnost'' Truda v Promyshlennosti","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Potential Hazard of Lithium Batteries in Unpredictable Use\",\"authors\":\"E.I. Khaliullina, E. Malysheva, E. Nasyrova, A. Elizaryev\",\"doi\":\"10.24000/0409-2961-2023-6-17-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-based batteries are designed and manufactured in such a way as to ensure their safe operation under various conditions. If lithium batteries are misused or damaged, hazards such as fire or explosion may occur. According to the Russian regulations, the safety of lithium-based batteries is considered from two points of view. The first is intended use, i.e., according to the specifications and instructions. The second is improper use under conditions not intended by the manufacturer, but easily predictable. The article explored the third option - unpredictable use, including events from predictable misuse, but not separately, but in combination. In particular, a hazard may arise if a battery is punctured inside military or rescue communications equipment while on duty, or when charging phones after prolonged exposure to extreme temperatures. To study a new option for using lithium-based batteries for assessing their potential hazard, a laboratory device was created and patented with the possibility of a mechanical puncture of the battery. During the research, the following potential hazards were recorded: ignition, explosion, leakage of electrolyte from the battery, pressure release and rupture of the battery hull with the release of internal components. Five experiments were set up (separately for each object under study) on discharged batteries. It was established that even discharged batteries have potential hazards of electrolyte leakage from the object and rupture of the hull with the release of internal components.\",\"PeriodicalId\":35650,\"journal\":{\"name\":\"Bezopasnost'' Truda v Promyshlennosti\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bezopasnost'' Truda v Promyshlennosti\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24000/0409-2961-2023-6-17-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bezopasnost'' Truda v Promyshlennosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24000/0409-2961-2023-6-17-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

锂基电池的设计和制造方式确保了其在各种条件下的安全运行。如果锂电池被滥用或损坏,可能会发生火灾或爆炸等危险。根据俄罗斯法规,锂基电池的安全性从两个角度考虑。第一种是预期用途,即根据规范和说明。第二种是在制造商不打算但很容易预测的条件下使用不当。这篇文章探讨了第三种选择——不可预测的使用,包括可预测的滥用事件,但不是单独使用,而是组合使用。特别是,如果在执勤时,或在长时间暴露在极端温度下给手机充电时,军事或救援通信设备内的电池被刺破,可能会产生危险。为了研究使用锂基电池评估其潜在危险的新选择,创建了一种实验室设备并获得了专利,该设备可以对电池进行机械穿刺。在研究过程中,记录了以下潜在危险:点火、爆炸、电池电解液泄漏、压力释放以及电池壳随着内部组件的释放而破裂。在放电电池上进行了五个实验(分别针对每个研究对象)。已经确定,即使是放电的电池也有潜在的危险,即电解液从物体中泄漏,以及随着内部组件的释放而导致船体破裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Potential Hazard of Lithium Batteries in Unpredictable Use
Lithium-based batteries are designed and manufactured in such a way as to ensure their safe operation under various conditions. If lithium batteries are misused or damaged, hazards such as fire or explosion may occur. According to the Russian regulations, the safety of lithium-based batteries is considered from two points of view. The first is intended use, i.e., according to the specifications and instructions. The second is improper use under conditions not intended by the manufacturer, but easily predictable. The article explored the third option - unpredictable use, including events from predictable misuse, but not separately, but in combination. In particular, a hazard may arise if a battery is punctured inside military or rescue communications equipment while on duty, or when charging phones after prolonged exposure to extreme temperatures. To study a new option for using lithium-based batteries for assessing their potential hazard, a laboratory device was created and patented with the possibility of a mechanical puncture of the battery. During the research, the following potential hazards were recorded: ignition, explosion, leakage of electrolyte from the battery, pressure release and rupture of the battery hull with the release of internal components. Five experiments were set up (separately for each object under study) on discharged batteries. It was established that even discharged batteries have potential hazards of electrolyte leakage from the object and rupture of the hull with the release of internal components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bezopasnost'' Truda v Promyshlennosti
Bezopasnost'' Truda v Promyshlennosti Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
110
期刊最新文献
Analytical Methodology for Substantiating the Optimal Frequency of Scheduled Inspections of the Fire-fighting Condition of Industrial and Warehouse Buildings Increasing Geodynamic Safety by Managing Induced Seismicity During the Development of Solid Mineral Deposits Critique and Improvement of the Regulatory Framework on the Calculation of Structures for Seismic Impacts On the Problem of the Large Tires Safe Operation Improving the Labor Safety of Mining Dump Truck Drivers by Reducing the Risk of Failure of the Functional Units of the Traction Electric Drive under Operating Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1