{"title":"文本预处理方法比较","authors":"Christine P. Chai","doi":"10.1017/S1351324922000213","DOIUrl":null,"url":null,"abstract":"Abstract Text preprocessing is not only an essential step to prepare the corpus for modeling but also a key area that directly affects the natural language processing (NLP) application results. For instance, precise tokenization increases the accuracy of part-of-speech (POS) tagging, and retaining multiword expressions improves reasoning and machine translation. The text corpus needs to be appropriately preprocessed before it is ready to serve as the input to computer models. The preprocessing requirements depend on both the nature of the corpus and the NLP application itself, that is, what researchers would like to achieve from analyzing the data. Conventional text preprocessing practices generally suffice, but there exist situations where the text preprocessing needs to be customized for better analysis results. Hence, we discuss the pros and cons of several common text preprocessing methods: removing formatting, tokenization, text normalization, handling punctuation, removing stopwords, stemming and lemmatization, n-gramming, and identifying multiword expressions. Then, we provide examples of text datasets which require special preprocessing and how previous researchers handled the challenge. We expect this article to be a starting guideline on how to select and fine-tune text preprocessing methods.","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":"29 1","pages":"509 - 553"},"PeriodicalIF":2.3000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparison of text preprocessing methods\",\"authors\":\"Christine P. Chai\",\"doi\":\"10.1017/S1351324922000213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Text preprocessing is not only an essential step to prepare the corpus for modeling but also a key area that directly affects the natural language processing (NLP) application results. For instance, precise tokenization increases the accuracy of part-of-speech (POS) tagging, and retaining multiword expressions improves reasoning and machine translation. The text corpus needs to be appropriately preprocessed before it is ready to serve as the input to computer models. The preprocessing requirements depend on both the nature of the corpus and the NLP application itself, that is, what researchers would like to achieve from analyzing the data. Conventional text preprocessing practices generally suffice, but there exist situations where the text preprocessing needs to be customized for better analysis results. Hence, we discuss the pros and cons of several common text preprocessing methods: removing formatting, tokenization, text normalization, handling punctuation, removing stopwords, stemming and lemmatization, n-gramming, and identifying multiword expressions. Then, we provide examples of text datasets which require special preprocessing and how previous researchers handled the challenge. We expect this article to be a starting guideline on how to select and fine-tune text preprocessing methods.\",\"PeriodicalId\":49143,\"journal\":{\"name\":\"Natural Language Engineering\",\"volume\":\"29 1\",\"pages\":\"509 - 553\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S1351324922000213\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S1351324922000213","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Abstract Text preprocessing is not only an essential step to prepare the corpus for modeling but also a key area that directly affects the natural language processing (NLP) application results. For instance, precise tokenization increases the accuracy of part-of-speech (POS) tagging, and retaining multiword expressions improves reasoning and machine translation. The text corpus needs to be appropriately preprocessed before it is ready to serve as the input to computer models. The preprocessing requirements depend on both the nature of the corpus and the NLP application itself, that is, what researchers would like to achieve from analyzing the data. Conventional text preprocessing practices generally suffice, but there exist situations where the text preprocessing needs to be customized for better analysis results. Hence, we discuss the pros and cons of several common text preprocessing methods: removing formatting, tokenization, text normalization, handling punctuation, removing stopwords, stemming and lemmatization, n-gramming, and identifying multiword expressions. Then, we provide examples of text datasets which require special preprocessing and how previous researchers handled the challenge. We expect this article to be a starting guideline on how to select and fine-tune text preprocessing methods.
期刊介绍:
Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.