未来ABC

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-10-17 DOI:10.1111/insr.12522
Henri Pesonen, Umberto Simola, Alvaro Köhn-Luque, Henri Vuollekoski, Xiaoran Lai, Arnoldo Frigessi, Samuel Kaski, David T. Frazier, Worapree Maneesoonthorn, Gael M. Martin, Jukka Corander
{"title":"未来ABC","authors":"Henri Pesonen,&nbsp;Umberto Simola,&nbsp;Alvaro Köhn-Luque,&nbsp;Henri Vuollekoski,&nbsp;Xiaoran Lai,&nbsp;Arnoldo Frigessi,&nbsp;Samuel Kaski,&nbsp;David T. Frazier,&nbsp;Worapree Maneesoonthorn,&nbsp;Gael M. Martin,&nbsp;Jukka Corander","doi":"10.1111/insr.12522","DOIUrl":null,"url":null,"abstract":"<p>Approximate Bayesian computation (ABC) has advanced in two decades from a seminal idea to a practically applicable inference tool for simulator-based statistical models, which are becoming increasingly popular in many research domains. The computational feasibility of ABC for practical applications has been recently boosted by adopting techniques from machine learning to build surrogate models for the approximate likelihood or posterior and by the introduction of a general-purpose software platform with several advanced features, including automated parallelisation. Here we demonstrate the strengths of the advances in ABC by going beyond the typical benchmark examples and considering real applications in astronomy, infectious disease epidemiology, personalised cancer therapy and financial prediction. We anticipate that the emerging success of ABC in producing actual added value and quantitative insights in the real world will continue to inspire a plethora of further applications across different fields of science, social science and technology.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12522","citationCount":"5","resultStr":"{\"title\":\"ABC of the future\",\"authors\":\"Henri Pesonen,&nbsp;Umberto Simola,&nbsp;Alvaro Köhn-Luque,&nbsp;Henri Vuollekoski,&nbsp;Xiaoran Lai,&nbsp;Arnoldo Frigessi,&nbsp;Samuel Kaski,&nbsp;David T. Frazier,&nbsp;Worapree Maneesoonthorn,&nbsp;Gael M. Martin,&nbsp;Jukka Corander\",\"doi\":\"10.1111/insr.12522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Approximate Bayesian computation (ABC) has advanced in two decades from a seminal idea to a practically applicable inference tool for simulator-based statistical models, which are becoming increasingly popular in many research domains. The computational feasibility of ABC for practical applications has been recently boosted by adopting techniques from machine learning to build surrogate models for the approximate likelihood or posterior and by the introduction of a general-purpose software platform with several advanced features, including automated parallelisation. Here we demonstrate the strengths of the advances in ABC by going beyond the typical benchmark examples and considering real applications in astronomy, infectious disease epidemiology, personalised cancer therapy and financial prediction. We anticipate that the emerging success of ABC in producing actual added value and quantitative insights in the real world will continue to inspire a plethora of further applications across different fields of science, social science and technology.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12522\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12522\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12522","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

近二十年来,近似贝叶斯计算(ABC)已经从一个开创性的想法发展成为基于模拟器的统计模型的实用推理工具,在许多研究领域越来越受欢迎。最近,通过采用机器学习技术来建立近似似然或后验的代理模型,以及引入具有几个高级功能的通用软件平台,包括自动并行化,提高了ABC在实际应用中的计算可行性。在这里,我们通过超越典型的基准示例,并考虑天文学、传染病流行病学、个性化癌症治疗和财务预测方面的实际应用,展示了ABC进步的优势。我们预计,ABC在现实世界中产生实际附加值和定量见解方面的新成功将继续激励科学、社会科学和技术不同领域的大量进一步应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ABC of the future

Approximate Bayesian computation (ABC) has advanced in two decades from a seminal idea to a practically applicable inference tool for simulator-based statistical models, which are becoming increasingly popular in many research domains. The computational feasibility of ABC for practical applications has been recently boosted by adopting techniques from machine learning to build surrogate models for the approximate likelihood or posterior and by the introduction of a general-purpose software platform with several advanced features, including automated parallelisation. Here we demonstrate the strengths of the advances in ABC by going beyond the typical benchmark examples and considering real applications in astronomy, infectious disease epidemiology, personalised cancer therapy and financial prediction. We anticipate that the emerging success of ABC in producing actual added value and quantitative insights in the real world will continue to inspire a plethora of further applications across different fields of science, social science and technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1