遗传回交研究中检验数量性状基因座效应的广义基准方法

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2021-12-28 DOI:10.1080/24754269.2021.1984636
Pengcheng Ren, Guanfu Liu, X. Pu, Yan Li
{"title":"遗传回交研究中检验数量性状基因座效应的广义基准方法","authors":"Pengcheng Ren, Guanfu Liu, X. Pu, Yan Li","doi":"10.1080/24754269.2021.1984636","DOIUrl":null,"url":null,"abstract":"In this paper, we propose generalized fiducial methods and construct four generalized p-values to test the existence of quantitative trait locus effects under phenotype distributions from a location-scale family. Compared with the likelihood ratio test based on simulation studies, our methods perform better at controlling type I errors while retaining comparable power in cases with small or moderate sample sizes. The four generalized fiducial methods support varied scenarios: two of them are more aggressive and powerful, whereas the other two appear more conservative and robust. A real data example involving mouse blood pressure is used to illustrate our proposed methods.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"148 - 160"},"PeriodicalIF":0.7000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized fiducial methods for testing quantitative trait locus effects in genetic backcross studies\",\"authors\":\"Pengcheng Ren, Guanfu Liu, X. Pu, Yan Li\",\"doi\":\"10.1080/24754269.2021.1984636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose generalized fiducial methods and construct four generalized p-values to test the existence of quantitative trait locus effects under phenotype distributions from a location-scale family. Compared with the likelihood ratio test based on simulation studies, our methods perform better at controlling type I errors while retaining comparable power in cases with small or moderate sample sizes. The four generalized fiducial methods support varied scenarios: two of them are more aggressive and powerful, whereas the other two appear more conservative and robust. A real data example involving mouse blood pressure is used to illustrate our proposed methods.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"6 1\",\"pages\":\"148 - 160\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2021.1984636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1984636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了广义基准方法,并构造了四个广义p值来检验在一个位置尺度家族的表型分布下数量性状基因座效应的存在性。与基于模拟研究的似然比检验相比,我们的方法在控制I型误差方面表现更好,同时在小样本量或中等样本量的情况下保持了可比的能力。四种广义基准方法支持不同的场景:其中两种更具攻击性和强大性,而另两种则显得更保守和稳健。使用一个涉及小鼠血压的真实数据示例来说明我们提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized fiducial methods for testing quantitative trait locus effects in genetic backcross studies
In this paper, we propose generalized fiducial methods and construct four generalized p-values to test the existence of quantitative trait locus effects under phenotype distributions from a location-scale family. Compared with the likelihood ratio test based on simulation studies, our methods perform better at controlling type I errors while retaining comparable power in cases with small or moderate sample sizes. The four generalized fiducial methods support varied scenarios: two of them are more aggressive and powerful, whereas the other two appear more conservative and robust. A real data example involving mouse blood pressure is used to illustrate our proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1