活性炭-镍硅复合材料超级电容器电极粘结剂聚合物的综合研究

Markus Diantoro , Istiqomah Istiqomah , Oktaviani Puji Dwi Lestari , Yusril Al Fath , Yudyanto Yudyanto , Chusnana Insjaf Yogihati , Munasir Munasir , Diah Hari Kusumawati , Zarina Binti Aspanut
{"title":"活性炭-镍硅复合材料超级电容器电极粘结剂聚合物的综合研究","authors":"Markus Diantoro ,&nbsp;Istiqomah Istiqomah ,&nbsp;Oktaviani Puji Dwi Lestari ,&nbsp;Yusril Al Fath ,&nbsp;Yudyanto Yudyanto ,&nbsp;Chusnana Insjaf Yogihati ,&nbsp;Munasir Munasir ,&nbsp;Diah Hari Kusumawati ,&nbsp;Zarina Binti Aspanut","doi":"10.1016/j.mset.2023.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Current trends suggest that as manufacturing and energy demand increase, there will be a greater consumtion for energy storage, requiring its utilization for days, weeks, or even months in the future. Recent studies also need to be conducted on binders that could support electrode performance, considering that binders are also a crucial component of the electrochemical processes in cells. In this study, activated carbon-based supercapacitor electrodes were fabricated using three different binders: PVDF, SBR, and LA133. With a gravimetric capacitance and power density of 52.57 Fg<sup>−1</sup> and 92.64 <span>W.kg</span><svg><path></path></svg><sup>−1</sup>, and a lifetime up to 87.23% after 1000 cycles, AC/CB LA133 has the best performance. LA133 was used as a binder to generate a Ni/Si composite as a battery electrode combined with the AC/CB LA133 supercapacitor to fabricate a supercapattery. This clearly shows that when a suitable binder such as LA133 is used, the electrochemical performance could be improved.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 368-381"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive study of binder polymer for supercapattery electrode based on activated carbon and nickel-silicon composite\",\"authors\":\"Markus Diantoro ,&nbsp;Istiqomah Istiqomah ,&nbsp;Oktaviani Puji Dwi Lestari ,&nbsp;Yusril Al Fath ,&nbsp;Yudyanto Yudyanto ,&nbsp;Chusnana Insjaf Yogihati ,&nbsp;Munasir Munasir ,&nbsp;Diah Hari Kusumawati ,&nbsp;Zarina Binti Aspanut\",\"doi\":\"10.1016/j.mset.2023.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Current trends suggest that as manufacturing and energy demand increase, there will be a greater consumtion for energy storage, requiring its utilization for days, weeks, or even months in the future. Recent studies also need to be conducted on binders that could support electrode performance, considering that binders are also a crucial component of the electrochemical processes in cells. In this study, activated carbon-based supercapacitor electrodes were fabricated using three different binders: PVDF, SBR, and LA133. With a gravimetric capacitance and power density of 52.57 Fg<sup>−1</sup> and 92.64 <span>W.kg</span><svg><path></path></svg><sup>−1</sup>, and a lifetime up to 87.23% after 1000 cycles, AC/CB LA133 has the best performance. LA133 was used as a binder to generate a Ni/Si composite as a battery electrode combined with the AC/CB LA133 supercapacitor to fabricate a supercapattery. This clearly shows that when a suitable binder such as LA133 is used, the electrochemical performance could be improved.</p></div>\",\"PeriodicalId\":18283,\"journal\":{\"name\":\"Materials Science for Energy Technologies\",\"volume\":\"6 \",\"pages\":\"Pages 368-381\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science for Energy Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589299123000150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

目前的趋势表明,随着制造业和能源需求的增加,能源存储将会有更大的消耗,未来需要使用几天、几周甚至几个月。考虑到粘合剂也是电池中电化学过程的关键组成部分,最近的研究还需要对支持电极性能的粘合剂进行研究。在这项研究中,活性炭基超级电容器电极由三种不同的粘合剂:PVDF, SBR和LA133制成。AC/CB LA133的重量电容和功率密度分别为52.57 Fg−1和92.64 W.kg−1,1000次循环后的寿命高达87.23%,性能最佳。以LA133为粘结剂制备Ni/Si复合材料作为电池电极,与AC/CB LA133超级电容器结合制备超级电容器。这清楚地表明,当使用合适的粘结剂(如LA133)时,可以提高电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive study of binder polymer for supercapattery electrode based on activated carbon and nickel-silicon composite

Current trends suggest that as manufacturing and energy demand increase, there will be a greater consumtion for energy storage, requiring its utilization for days, weeks, or even months in the future. Recent studies also need to be conducted on binders that could support electrode performance, considering that binders are also a crucial component of the electrochemical processes in cells. In this study, activated carbon-based supercapacitor electrodes were fabricated using three different binders: PVDF, SBR, and LA133. With a gravimetric capacitance and power density of 52.57 Fg−1 and 92.64 W.kg−1, and a lifetime up to 87.23% after 1000 cycles, AC/CB LA133 has the best performance. LA133 was used as a binder to generate a Ni/Si composite as a battery electrode combined with the AC/CB LA133 supercapacitor to fabricate a supercapattery. This clearly shows that when a suitable binder such as LA133 is used, the electrochemical performance could be improved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
期刊最新文献
Li-S-B Glass-Ceramics: A Novel electrode materials for energy storage technology Selective hydrogenation of 1,3-butadiene to butenes on ceria-supported Pd, Ni and PdNi catalysts: Combined experimental and DFT outlook Compositing LaSrMnO3 perovskite and graphene oxide nanoribbons for highly stable asymmetric electrochemical supercapacitors Facile synthesis and electrochemical performance of bacterial cellulose/reduced graphene oxide/NiCo-layered double hydroxide composite film for self-standing supercapacitor electrode A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1