{"title":"超薄金属有机框架纳米片及器件","authors":"A. Meiyazhagan","doi":"10.1093/oxfmat/itab019","DOIUrl":null,"url":null,"abstract":"\n A few recent findings on ultrathin two-dimensional (2D) metal-organic frameworks (MOFs) were discussed in this spotlight review. MOFs are a class of materials with intriguing properties for possible applications in several fields ranging from catalysis to sensors and functional devices. To date, several synthesis strategies have been explored to derive crystalline 2D MOF structures. However, most synthetic strategies to obtain such materials remain underexplored. This highlighted review evaluated select synthesis strategies focused on deriving micron-sized 2D MOF crystals, emphasizing their rich chemistries. More importantly, the possibility of integrating the synthesized ultrathin 2D crystalline MOFs into the functional device and their electrical conductivity measurements are reviewed. Overall, this review provides the most recent outcomes in the ultrathin 2D MOF community and its influence on electronic devices.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin Metal-Organic Framework Nanosheets and Devices\",\"authors\":\"A. Meiyazhagan\",\"doi\":\"10.1093/oxfmat/itab019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A few recent findings on ultrathin two-dimensional (2D) metal-organic frameworks (MOFs) were discussed in this spotlight review. MOFs are a class of materials with intriguing properties for possible applications in several fields ranging from catalysis to sensors and functional devices. To date, several synthesis strategies have been explored to derive crystalline 2D MOF structures. However, most synthetic strategies to obtain such materials remain underexplored. This highlighted review evaluated select synthesis strategies focused on deriving micron-sized 2D MOF crystals, emphasizing their rich chemistries. More importantly, the possibility of integrating the synthesized ultrathin 2D crystalline MOFs into the functional device and their electrical conductivity measurements are reviewed. Overall, this review provides the most recent outcomes in the ultrathin 2D MOF community and its influence on electronic devices.\",\"PeriodicalId\":74385,\"journal\":{\"name\":\"Oxford open materials science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford open materials science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oxfmat/itab019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itab019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrathin Metal-Organic Framework Nanosheets and Devices
A few recent findings on ultrathin two-dimensional (2D) metal-organic frameworks (MOFs) were discussed in this spotlight review. MOFs are a class of materials with intriguing properties for possible applications in several fields ranging from catalysis to sensors and functional devices. To date, several synthesis strategies have been explored to derive crystalline 2D MOF structures. However, most synthetic strategies to obtain such materials remain underexplored. This highlighted review evaluated select synthesis strategies focused on deriving micron-sized 2D MOF crystals, emphasizing their rich chemistries. More importantly, the possibility of integrating the synthesized ultrathin 2D crystalline MOFs into the functional device and their electrical conductivity measurements are reviewed. Overall, this review provides the most recent outcomes in the ultrathin 2D MOF community and its influence on electronic devices.