{"title":"用虚拟测试和混合仿真打破测试金字塔","authors":"S. You, X. Shawn Gao, A. Nelson","doi":"10.2478/fas-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract Virtual testing and hybrid simulation have become an important trend in airplane design and validation. The traditional Testing Pyramid (or Building Block) approaches that emphasis on uniaxial coupon test and full structure certification test are being challenged. Researchers are trying to use advanced testing and simulation methods to replace the Testing Pyramid approach. Before physical testing, virtual testing can be conducted to simulate the physical test. Virtual model of the full testing system including controller, actuators, and fixtures can be constructed and validated. In this work, an example has been developed and validated to show the potentials of the virtual testing process. Hybrid simulation is an approach of analyzing an analysis model and physical structure integrated system under realistic loading conditions. Hybrid simulation combines the lab testing with numerical analysis to explore the benefits of both methodologies. In this study, a hybrid simulation for a simplified airplane wing was conducted to demonstrate the process. Virtual testing and hybrid simulation are alternative methods of Testing Pyramid approach. Full scale tests are still required for certification but the more that is known about the test article, the greater chances of success in the full-scale certification testing.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2019 1","pages":"1 - 10"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Breaking the Testing Pyramid with Virtual Testing and Hybrid Simulation\",\"authors\":\"S. You, X. Shawn Gao, A. Nelson\",\"doi\":\"10.2478/fas-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Virtual testing and hybrid simulation have become an important trend in airplane design and validation. The traditional Testing Pyramid (or Building Block) approaches that emphasis on uniaxial coupon test and full structure certification test are being challenged. Researchers are trying to use advanced testing and simulation methods to replace the Testing Pyramid approach. Before physical testing, virtual testing can be conducted to simulate the physical test. Virtual model of the full testing system including controller, actuators, and fixtures can be constructed and validated. In this work, an example has been developed and validated to show the potentials of the virtual testing process. Hybrid simulation is an approach of analyzing an analysis model and physical structure integrated system under realistic loading conditions. Hybrid simulation combines the lab testing with numerical analysis to explore the benefits of both methodologies. In this study, a hybrid simulation for a simplified airplane wing was conducted to demonstrate the process. Virtual testing and hybrid simulation are alternative methods of Testing Pyramid approach. Full scale tests are still required for certification but the more that is known about the test article, the greater chances of success in the full-scale certification testing.\",\"PeriodicalId\":37629,\"journal\":{\"name\":\"Fatigue of Aircraft Structures\",\"volume\":\"2019 1\",\"pages\":\"1 - 10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue of Aircraft Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fas-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fas-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Breaking the Testing Pyramid with Virtual Testing and Hybrid Simulation
Abstract Virtual testing and hybrid simulation have become an important trend in airplane design and validation. The traditional Testing Pyramid (or Building Block) approaches that emphasis on uniaxial coupon test and full structure certification test are being challenged. Researchers are trying to use advanced testing and simulation methods to replace the Testing Pyramid approach. Before physical testing, virtual testing can be conducted to simulate the physical test. Virtual model of the full testing system including controller, actuators, and fixtures can be constructed and validated. In this work, an example has been developed and validated to show the potentials of the virtual testing process. Hybrid simulation is an approach of analyzing an analysis model and physical structure integrated system under realistic loading conditions. Hybrid simulation combines the lab testing with numerical analysis to explore the benefits of both methodologies. In this study, a hybrid simulation for a simplified airplane wing was conducted to demonstrate the process. Virtual testing and hybrid simulation are alternative methods of Testing Pyramid approach. Full scale tests are still required for certification but the more that is known about the test article, the greater chances of success in the full-scale certification testing.
期刊介绍:
The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.