{"title":"混合CNT束作为纳米技术节点全局互连的延迟分析","authors":"Gurleen Dhillon, K. S. Sandha","doi":"10.2478/jee-2023-0007","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents modeling of high current capability of mixed carbon nanotube (CNT) bundle interconnects depending upon the type of constituent CNT materials and their orientations. With different arrangements, one category of novel mixed CNT bundles formed by the combination of multi-walled/multi-shell CNT and double-shell CNT bundles (MDCB) are proposed and compared with the mixed CNT bundles (MSCB) formed with multi-shell CNT and single-walled CNT bundles. A time-domain analysis is performed for these structures to analyse the effect of delay and power dissipation. It has also been observed that MDCB structures give better performance (≈ 30%) than MSCB structures in terms of power-delay product at the global length of interconnect for nano-regime technology nodes. Also, MDCB structure formed by placing multi-walled CNTs along the periphery and double-walled CNTs in the centre of structure yields the best result against all proposed mixed CNT bundled structures and can be employed for future interconnect applications.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"74 1","pages":"57 - 63"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delay analysis of mixed CNT bundles as global interconnect for nanotechnology nodes\",\"authors\":\"Gurleen Dhillon, K. S. Sandha\",\"doi\":\"10.2478/jee-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents modeling of high current capability of mixed carbon nanotube (CNT) bundle interconnects depending upon the type of constituent CNT materials and their orientations. With different arrangements, one category of novel mixed CNT bundles formed by the combination of multi-walled/multi-shell CNT and double-shell CNT bundles (MDCB) are proposed and compared with the mixed CNT bundles (MSCB) formed with multi-shell CNT and single-walled CNT bundles. A time-domain analysis is performed for these structures to analyse the effect of delay and power dissipation. It has also been observed that MDCB structures give better performance (≈ 30%) than MSCB structures in terms of power-delay product at the global length of interconnect for nano-regime technology nodes. Also, MDCB structure formed by placing multi-walled CNTs along the periphery and double-walled CNTs in the centre of structure yields the best result against all proposed mixed CNT bundled structures and can be employed for future interconnect applications.\",\"PeriodicalId\":15661,\"journal\":{\"name\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"volume\":\"74 1\",\"pages\":\"57 - 63\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2023-0007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2023-0007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Delay analysis of mixed CNT bundles as global interconnect for nanotechnology nodes
Abstract This paper presents modeling of high current capability of mixed carbon nanotube (CNT) bundle interconnects depending upon the type of constituent CNT materials and their orientations. With different arrangements, one category of novel mixed CNT bundles formed by the combination of multi-walled/multi-shell CNT and double-shell CNT bundles (MDCB) are proposed and compared with the mixed CNT bundles (MSCB) formed with multi-shell CNT and single-walled CNT bundles. A time-domain analysis is performed for these structures to analyse the effect of delay and power dissipation. It has also been observed that MDCB structures give better performance (≈ 30%) than MSCB structures in terms of power-delay product at the global length of interconnect for nano-regime technology nodes. Also, MDCB structure formed by placing multi-walled CNTs along the periphery and double-walled CNTs in the centre of structure yields the best result against all proposed mixed CNT bundled structures and can be employed for future interconnect applications.
期刊介绍:
The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising.
-Automation and Control-
Computer Engineering-
Electronics and Microelectronics-
Electro-physics and Electromagnetism-
Material Science-
Measurement and Metrology-
Power Engineering and Energy Conversion-
Signal Processing and Telecommunications