丁腈加成稳定Li2O基阴极/电解质界面

IF 2.2 4区 工程技术 Q3 ELECTROCHEMISTRY Journal of electrochemical science and technology Pub Date : 2023-04-28 DOI:10.33961/jecst.2023.00087
Myeong Jun Joo, Y. Park
{"title":"丁腈加成稳定Li2O基阴极/电解质界面","authors":"Myeong Jun Joo, Y. Park","doi":"10.33961/jecst.2023.00087","DOIUrl":null,"url":null,"abstract":"Li 2 O-based cathodes utilizing oxide–peroxide conversion are innovative next-generation cathodes that have the potential to surpass the capacity of current commercial cathodes. However, these cathodes are exposed to severe cathode–electrolyte side reactions owing to the formation of highly reactive superoxides (O x-, 1 ≤ x < 2) from O 2-ions in the Li 2 O structure during charging. Succinonitrile (SN) has been used as a stabilizer at the cathode/electrolyte interface to mitigate cathode–electrolyte side reactions. SN forms a protective layer through decomposition during cycling, potentially reducing unwanted side reactions at the interface. In this study, a composite of Li 2 O and Ni-embedded reduced graphene oxide (LNGO) was used as the Li 2 O-based cathode. The addition of SN effectively thinned the interfacial layer formed during cycling. The presence of a N-derived layer resulting from the decomposition of SN was observed after cycling, potentially suppressing the formation of undesirable reaction products and the growth of the interfacial layer. The cell with the SN additive exhibited an enhanced electrochemical performance, including increased usable capacity and improved cyclic performance. The results confirm that incorporating the SN additive effectively stabilizes the cathode–electrolyte interface in Li 2 O-based cathodes.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing Li2O-based Cathode/Electrolyte Interfaces through Succinonitrile Addition\",\"authors\":\"Myeong Jun Joo, Y. Park\",\"doi\":\"10.33961/jecst.2023.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Li 2 O-based cathodes utilizing oxide–peroxide conversion are innovative next-generation cathodes that have the potential to surpass the capacity of current commercial cathodes. However, these cathodes are exposed to severe cathode–electrolyte side reactions owing to the formation of highly reactive superoxides (O x-, 1 ≤ x < 2) from O 2-ions in the Li 2 O structure during charging. Succinonitrile (SN) has been used as a stabilizer at the cathode/electrolyte interface to mitigate cathode–electrolyte side reactions. SN forms a protective layer through decomposition during cycling, potentially reducing unwanted side reactions at the interface. In this study, a composite of Li 2 O and Ni-embedded reduced graphene oxide (LNGO) was used as the Li 2 O-based cathode. The addition of SN effectively thinned the interfacial layer formed during cycling. The presence of a N-derived layer resulting from the decomposition of SN was observed after cycling, potentially suppressing the formation of undesirable reaction products and the growth of the interfacial layer. The cell with the SN additive exhibited an enhanced electrochemical performance, including increased usable capacity and improved cyclic performance. The results confirm that incorporating the SN additive effectively stabilizes the cathode–electrolyte interface in Li 2 O-based cathodes.\",\"PeriodicalId\":15542,\"journal\":{\"name\":\"Journal of electrochemical science and technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electrochemical science and technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33961/jecst.2023.00087\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrochemical science and technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33961/jecst.2023.00087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilizing Li2O-based Cathode/Electrolyte Interfaces through Succinonitrile Addition
Li 2 O-based cathodes utilizing oxide–peroxide conversion are innovative next-generation cathodes that have the potential to surpass the capacity of current commercial cathodes. However, these cathodes are exposed to severe cathode–electrolyte side reactions owing to the formation of highly reactive superoxides (O x-, 1 ≤ x < 2) from O 2-ions in the Li 2 O structure during charging. Succinonitrile (SN) has been used as a stabilizer at the cathode/electrolyte interface to mitigate cathode–electrolyte side reactions. SN forms a protective layer through decomposition during cycling, potentially reducing unwanted side reactions at the interface. In this study, a composite of Li 2 O and Ni-embedded reduced graphene oxide (LNGO) was used as the Li 2 O-based cathode. The addition of SN effectively thinned the interfacial layer formed during cycling. The presence of a N-derived layer resulting from the decomposition of SN was observed after cycling, potentially suppressing the formation of undesirable reaction products and the growth of the interfacial layer. The cell with the SN additive exhibited an enhanced electrochemical performance, including increased usable capacity and improved cyclic performance. The results confirm that incorporating the SN additive effectively stabilizes the cathode–electrolyte interface in Li 2 O-based cathodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
8.10%
发文量
44
期刊介绍: Covering fields: - Batteries and Energy Storage - Biological Electrochemistry - Corrosion Science and Technology - Electroanalytical Chemistry and Sensor Technology - Electrocatalysis - Electrochemical Capacitors & Supercapcitors - Electrochemical Engineering - Electrodeposition and Surface Treatment - Environmental Science and Technology - Fuel Cells - Material Electrochemistry - Molecular Electrochemistry and Organic Electrochemistry - Physical Electrochemistry - Solar Energy Conversion and Photoelectrochemistry
期刊最新文献
Temperature-Dependent Mn Substitution Effect on LiNiO2 The Effect of Obstacle Number, Shape and Blockage Degree in Flow Field of PEMFC on its Performance Revolutionizing Energy Storage: Exploring Processing Approaches and Electrochemical Performance of Metal-Organic Frameworks (MOFs) and Their Hybrids Electrodeposition of Ni–W/Al<sub>2</sub>O<sub>3</sub> Nano-Composites and the Influence of Al<sub>2</sub>O<sub>3</sub> Incorporation on Mechanical and Corrosion Resistance Behaviours Surface Engineering of GaN Photoelectrode by NH3 Treatment for Solar Water Oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1