电池退化建模在大容量电力系统优化中的作用

IF 3.3 Q3 ENERGY & FUELS MRS Energy & Sustainability Pub Date : 2022-09-01 DOI:10.1557/s43581-022-00047-7
Bolun Xu
{"title":"电池退化建模在大容量电力系统优化中的作用","authors":"Bolun Xu","doi":"10.1557/s43581-022-00047-7","DOIUrl":null,"url":null,"abstract":"Battery energy storage is critical to decarbonizing future power systems, and the cost of battery degradation within power system operations is crucial to ensure economic utilization of battery resources and provide a fair return to their investors. Power system operators dispatch assets by solving optimization problems of extreme complexity that include thousands of generators and transmission lines, and degradation models to be incorporated into power system optimization must be efficient to compute while capturing key degradation factors relevant to grid operations. This paper will compare various degradation models that are incorporable into power system optimization; each has different computation complexities and modeling focuses. This paper will summarize the pros and cons of different models, and how they may suit different battery technologies or configurations. Besides modeling, the paper discusses the opportunity cost of degradation and the battery warranty terms, both will impact the design and implementation of degradation models in power systems. The paper summarizes the comparison and future directions for designing degradation models for grid-scale batteries. Graphical abstract","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The role of modeling battery degradation in bulk power system optimizations\",\"authors\":\"Bolun Xu\",\"doi\":\"10.1557/s43581-022-00047-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battery energy storage is critical to decarbonizing future power systems, and the cost of battery degradation within power system operations is crucial to ensure economic utilization of battery resources and provide a fair return to their investors. Power system operators dispatch assets by solving optimization problems of extreme complexity that include thousands of generators and transmission lines, and degradation models to be incorporated into power system optimization must be efficient to compute while capturing key degradation factors relevant to grid operations. This paper will compare various degradation models that are incorporable into power system optimization; each has different computation complexities and modeling focuses. This paper will summarize the pros and cons of different models, and how they may suit different battery technologies or configurations. Besides modeling, the paper discusses the opportunity cost of degradation and the battery warranty terms, both will impact the design and implementation of degradation models in power systems. The paper summarizes the comparison and future directions for designing degradation models for grid-scale batteries. Graphical abstract\",\"PeriodicalId\":44802,\"journal\":{\"name\":\"MRS Energy & Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Energy & Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1557/s43581-022-00047-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43581-022-00047-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4

摘要

电池储能对于未来电力系统的脱碳至关重要,而电力系统运营中电池退化的成本对于确保电池资源的经济利用和为投资者提供公平回报至关重要。电力系统运营商通过解决包括数千台发电机和输电线路在内的极端复杂的优化问题来调度资产,要纳入电力系统优化的退化模型必须能够高效计算,同时捕捉与电网运营相关的关键退化因素。本文将比较可纳入电力系统优化的各种退化模型;每种方法都有不同的计算复杂性和建模重点。本文将总结不同型号的优缺点,以及它们如何适合不同的电池技术或配置。除建模外,本文还讨论了退化的机会成本和电池保修条款,这两个问题都将影响电力系统退化模型的设计和实施。本文总结了电网规模电池退化模型设计的比较和未来方向。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of modeling battery degradation in bulk power system optimizations
Battery energy storage is critical to decarbonizing future power systems, and the cost of battery degradation within power system operations is crucial to ensure economic utilization of battery resources and provide a fair return to their investors. Power system operators dispatch assets by solving optimization problems of extreme complexity that include thousands of generators and transmission lines, and degradation models to be incorporated into power system optimization must be efficient to compute while capturing key degradation factors relevant to grid operations. This paper will compare various degradation models that are incorporable into power system optimization; each has different computation complexities and modeling focuses. This paper will summarize the pros and cons of different models, and how they may suit different battery technologies or configurations. Besides modeling, the paper discusses the opportunity cost of degradation and the battery warranty terms, both will impact the design and implementation of degradation models in power systems. The paper summarizes the comparison and future directions for designing degradation models for grid-scale batteries. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
期刊最新文献
MXenes vs MBenes: Demystifying the materials of tomorrow’s carbon capture revolution Materials scarcity during the clean energy transition: Myths, challenges, and opportunities Carbon footprint inventory using life cycle energy analysis Advanced hybrid combustion systems as a part of efforts to achieve carbon neutrality of the vehicles Assessment of the penetration impact of renewable-rich electrical grids: The Jordanian grid as a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1