Maria Vives-Ingla, Javier Sala-Garcia, Constantí Stefanescu, Armand Casadó-Tortosa, Meritxell Garcia, Josep Peñuelas, Jofre Carnicer
{"title":"微生境使用的种间差异使昆虫面临截然不同的热死亡率","authors":"Maria Vives-Ingla, Javier Sala-Garcia, Constantí Stefanescu, Armand Casadó-Tortosa, Meritxell Garcia, Josep Peñuelas, Jofre Carnicer","doi":"10.1002/ecm.1561","DOIUrl":null,"url":null,"abstract":"<p>Ecotones linking open and forested habitats contain multiple microhabitats with varying vegetal structures and microclimatic regimes. Ecotones host many insect species whose development is intimately linked to the microclimatic conditions where they grow (e.g., the leaves of their host plants and the surrounding air). Yet microclimatic heterogeneity at these fine scales and its effects on insects remain poorly quantified for most species. Here we studied how interspecific differences in the use of microhabitats across ecotones lead to contrasting thermal exposure and survival costs between two closely-related butterflies (<i>Pieris napi</i> and <i>P. rapae</i>). We first assessed whether butterflies selected different microhabitats to oviposit and quantified the thermal conditions at the microhabitat and foliar scales. We also assessed concurrent changes in the quality and availability of host plants. Finally, we quantified larval time of death under different experimental temperatures (thermal death time [TDT] curves) to predict their thermal mortality considering both the intensity and the duration of the microclimatic heat challenges in the field. We identified six processes determining larval thermal exposure at fine scales associated with butterfly oviposition behavior, canopy shading, and heat and water fluxes at the soil and foliar levels. Leaves in open microhabitats could reach temperatures 3–10°C warmer than the surrounding air while more closed microhabitats presented more buffered and homogeneous temperatures. Interspecific differences in microhabitat use matched the TDT curves and the thermal mortality in the field. Open microhabitats posed acute heat challenges that were better withstood by the thermotolerant butterfly, <i>P. rapae</i>, where the species mainly laid their eggs. Despite being more thermosensitive, <i>P. napi</i> was predicted to present higher survivals than <i>P. rapae</i> due to the thermal buffering provided by their selected microhabitats. However, its offspring could be more vulnerable to host-plant scarcity during summer drought periods. Overall, the different interaction of the butterflies with microclimatic and host-plant variation emerging at fine scales and their different thermal sensitivity posed them contrasting heat and resource challenges. Our results contribute to setting a new framework that predicts insect vulnerability to climate change based on their thermal sensitivity and the intensity, duration, and accumulation of their heat exposure.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 2","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1561","citationCount":"2","resultStr":"{\"title\":\"Interspecific differences in microhabitat use expose insects to contrasting thermal mortality\",\"authors\":\"Maria Vives-Ingla, Javier Sala-Garcia, Constantí Stefanescu, Armand Casadó-Tortosa, Meritxell Garcia, Josep Peñuelas, Jofre Carnicer\",\"doi\":\"10.1002/ecm.1561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecotones linking open and forested habitats contain multiple microhabitats with varying vegetal structures and microclimatic regimes. Ecotones host many insect species whose development is intimately linked to the microclimatic conditions where they grow (e.g., the leaves of their host plants and the surrounding air). Yet microclimatic heterogeneity at these fine scales and its effects on insects remain poorly quantified for most species. Here we studied how interspecific differences in the use of microhabitats across ecotones lead to contrasting thermal exposure and survival costs between two closely-related butterflies (<i>Pieris napi</i> and <i>P. rapae</i>). We first assessed whether butterflies selected different microhabitats to oviposit and quantified the thermal conditions at the microhabitat and foliar scales. We also assessed concurrent changes in the quality and availability of host plants. Finally, we quantified larval time of death under different experimental temperatures (thermal death time [TDT] curves) to predict their thermal mortality considering both the intensity and the duration of the microclimatic heat challenges in the field. We identified six processes determining larval thermal exposure at fine scales associated with butterfly oviposition behavior, canopy shading, and heat and water fluxes at the soil and foliar levels. Leaves in open microhabitats could reach temperatures 3–10°C warmer than the surrounding air while more closed microhabitats presented more buffered and homogeneous temperatures. Interspecific differences in microhabitat use matched the TDT curves and the thermal mortality in the field. Open microhabitats posed acute heat challenges that were better withstood by the thermotolerant butterfly, <i>P. rapae</i>, where the species mainly laid their eggs. Despite being more thermosensitive, <i>P. napi</i> was predicted to present higher survivals than <i>P. rapae</i> due to the thermal buffering provided by their selected microhabitats. However, its offspring could be more vulnerable to host-plant scarcity during summer drought periods. Overall, the different interaction of the butterflies with microclimatic and host-plant variation emerging at fine scales and their different thermal sensitivity posed them contrasting heat and resource challenges. Our results contribute to setting a new framework that predicts insect vulnerability to climate change based on their thermal sensitivity and the intensity, duration, and accumulation of their heat exposure.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"93 2\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1561\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1561\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1561","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Interspecific differences in microhabitat use expose insects to contrasting thermal mortality
Ecotones linking open and forested habitats contain multiple microhabitats with varying vegetal structures and microclimatic regimes. Ecotones host many insect species whose development is intimately linked to the microclimatic conditions where they grow (e.g., the leaves of their host plants and the surrounding air). Yet microclimatic heterogeneity at these fine scales and its effects on insects remain poorly quantified for most species. Here we studied how interspecific differences in the use of microhabitats across ecotones lead to contrasting thermal exposure and survival costs between two closely-related butterflies (Pieris napi and P. rapae). We first assessed whether butterflies selected different microhabitats to oviposit and quantified the thermal conditions at the microhabitat and foliar scales. We also assessed concurrent changes in the quality and availability of host plants. Finally, we quantified larval time of death under different experimental temperatures (thermal death time [TDT] curves) to predict their thermal mortality considering both the intensity and the duration of the microclimatic heat challenges in the field. We identified six processes determining larval thermal exposure at fine scales associated with butterfly oviposition behavior, canopy shading, and heat and water fluxes at the soil and foliar levels. Leaves in open microhabitats could reach temperatures 3–10°C warmer than the surrounding air while more closed microhabitats presented more buffered and homogeneous temperatures. Interspecific differences in microhabitat use matched the TDT curves and the thermal mortality in the field. Open microhabitats posed acute heat challenges that were better withstood by the thermotolerant butterfly, P. rapae, where the species mainly laid their eggs. Despite being more thermosensitive, P. napi was predicted to present higher survivals than P. rapae due to the thermal buffering provided by their selected microhabitats. However, its offspring could be more vulnerable to host-plant scarcity during summer drought periods. Overall, the different interaction of the butterflies with microclimatic and host-plant variation emerging at fine scales and their different thermal sensitivity posed them contrasting heat and resource challenges. Our results contribute to setting a new framework that predicts insect vulnerability to climate change based on their thermal sensitivity and the intensity, duration, and accumulation of their heat exposure.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.