{"title":"激光无涂层喷丸(LPwC)对SM490板疲劳裂纹扩展的抑制作用","authors":"Tomoharu Kato , Yoshihiro Sakino , Yuji Sano","doi":"10.1016/j.finmec.2023.100234","DOIUrl":null,"url":null,"abstract":"<div><p>Laser peening without coating (LPwC) is a well-known technique to improve high-cycle fatigue properties by introducing compressive residual stress (RS) near the surface of metal components. In this study, X-ray diffraction (XRD) and flexural fatigue tests were applied to pre-cracked 12 mm thick SM490A welding structural steel specimens that were subjected to LPwC nearly 20 years ago with a pulse energy of 200 mJ, a spot diameter of 0.8 mm and a pulse density of 36 pulse/mm<sup>2</sup>. XRD revealed that the compressive RS has remained stable to date, with approximately 400–500 MPa remaining at the surface and a compressive depth of approximately 0.9 mm from the surface, which is comparable to the data measured by XRD immediately after LPwC. In the flexural fatigue tests with a stress ratio of 0.1 and stress rages of 100, 150 and 200 MPa, LPwC extended the fatigue life by more than 1.6 times, depending on the stress range and individual specimens. Crack restarting cycles were significantly increased by a factor of at least 1.8, and the crack growth rate was suppressed by a factor of about 0.7 or less.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of laser peening without coating (LPwC) on retardation of fatigue crack growth in SM490 plates\",\"authors\":\"Tomoharu Kato , Yoshihiro Sakino , Yuji Sano\",\"doi\":\"10.1016/j.finmec.2023.100234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser peening without coating (LPwC) is a well-known technique to improve high-cycle fatigue properties by introducing compressive residual stress (RS) near the surface of metal components. In this study, X-ray diffraction (XRD) and flexural fatigue tests were applied to pre-cracked 12 mm thick SM490A welding structural steel specimens that were subjected to LPwC nearly 20 years ago with a pulse energy of 200 mJ, a spot diameter of 0.8 mm and a pulse density of 36 pulse/mm<sup>2</sup>. XRD revealed that the compressive RS has remained stable to date, with approximately 400–500 MPa remaining at the surface and a compressive depth of approximately 0.9 mm from the surface, which is comparable to the data measured by XRD immediately after LPwC. In the flexural fatigue tests with a stress ratio of 0.1 and stress rages of 100, 150 and 200 MPa, LPwC extended the fatigue life by more than 1.6 times, depending on the stress range and individual specimens. Crack restarting cycles were significantly increased by a factor of at least 1.8, and the crack growth rate was suppressed by a factor of about 0.7 or less.</p></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of laser peening without coating (LPwC) on retardation of fatigue crack growth in SM490 plates
Laser peening without coating (LPwC) is a well-known technique to improve high-cycle fatigue properties by introducing compressive residual stress (RS) near the surface of metal components. In this study, X-ray diffraction (XRD) and flexural fatigue tests were applied to pre-cracked 12 mm thick SM490A welding structural steel specimens that were subjected to LPwC nearly 20 years ago with a pulse energy of 200 mJ, a spot diameter of 0.8 mm and a pulse density of 36 pulse/mm2. XRD revealed that the compressive RS has remained stable to date, with approximately 400–500 MPa remaining at the surface and a compressive depth of approximately 0.9 mm from the surface, which is comparable to the data measured by XRD immediately after LPwC. In the flexural fatigue tests with a stress ratio of 0.1 and stress rages of 100, 150 and 200 MPa, LPwC extended the fatigue life by more than 1.6 times, depending on the stress range and individual specimens. Crack restarting cycles were significantly increased by a factor of at least 1.8, and the crack growth rate was suppressed by a factor of about 0.7 or less.