L. Vásárhelyi, D. Sebők, Imre Szenti, Ádám Tóth, Sára Lévay, R. Vajtai, Z. Kónya, Á. Kukovecz
{"title":"空隙率作为混合的一种定量测量方法——基于微CT分析的颗粒材料实例研究","authors":"L. Vásárhelyi, D. Sebők, Imre Szenti, Ádám Tóth, Sára Lévay, R. Vajtai, Z. Kónya, Á. Kukovecz","doi":"10.1093/oxfmat/itad014","DOIUrl":null,"url":null,"abstract":"\n In practically every industry, mixing is a fundamental process, yet its 3D analysis is scarce in the literature. High-resolution computed tomography (micro-CT) is the perfect X-ray imaging tool to investigate the mixing of granular materials. Other than qualitative analysis, 3D micro-CT images provide an opportunity for quantitative analysis, which is of utmost importance, in terms of efficiency (time and budget), and environmental impact of the mixing process. In this work, lacunarity is proposed as a measure of mixing. By the lacunarity calculation on the repeated micro-CT measurements, a temporal description of the mixing can be given in three dimensions. As opposed to traditional mixing indices, the lacunarity curve provides additional information regarding the spatial distribution of the grains. Discrete element method simulations were also performed and showed similar results to the experiments.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lacunarity as a quantitative measure of mixing—a micro-CT analysis-based case study on granular materials\",\"authors\":\"L. Vásárhelyi, D. Sebők, Imre Szenti, Ádám Tóth, Sára Lévay, R. Vajtai, Z. Kónya, Á. Kukovecz\",\"doi\":\"10.1093/oxfmat/itad014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In practically every industry, mixing is a fundamental process, yet its 3D analysis is scarce in the literature. High-resolution computed tomography (micro-CT) is the perfect X-ray imaging tool to investigate the mixing of granular materials. Other than qualitative analysis, 3D micro-CT images provide an opportunity for quantitative analysis, which is of utmost importance, in terms of efficiency (time and budget), and environmental impact of the mixing process. In this work, lacunarity is proposed as a measure of mixing. By the lacunarity calculation on the repeated micro-CT measurements, a temporal description of the mixing can be given in three dimensions. As opposed to traditional mixing indices, the lacunarity curve provides additional information regarding the spatial distribution of the grains. Discrete element method simulations were also performed and showed similar results to the experiments.\",\"PeriodicalId\":74385,\"journal\":{\"name\":\"Oxford open materials science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford open materials science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oxfmat/itad014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itad014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Lacunarity as a quantitative measure of mixing—a micro-CT analysis-based case study on granular materials
In practically every industry, mixing is a fundamental process, yet its 3D analysis is scarce in the literature. High-resolution computed tomography (micro-CT) is the perfect X-ray imaging tool to investigate the mixing of granular materials. Other than qualitative analysis, 3D micro-CT images provide an opportunity for quantitative analysis, which is of utmost importance, in terms of efficiency (time and budget), and environmental impact of the mixing process. In this work, lacunarity is proposed as a measure of mixing. By the lacunarity calculation on the repeated micro-CT measurements, a temporal description of the mixing can be given in three dimensions. As opposed to traditional mixing indices, the lacunarity curve provides additional information regarding the spatial distribution of the grains. Discrete element method simulations were also performed and showed similar results to the experiments.