水热处理沼液处理水中无机物和有机物的变化

Xiaofei Ge, Tao Zhang
{"title":"水热处理沼液处理水中无机物和有机物的变化","authors":"Xiaofei Ge,&nbsp;Tao Zhang","doi":"10.1016/j.mset.2022.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon neutrality innovation technologies are a leading research topic in sustainable development. Among these, anaerobic digestion is considered as a better choice for biowaste utilization. However, large amounts of produced biogas slurry hamper the widespread application of anaerobic digestion. The hydrothermal process is regarded as favorable to treat biogas slurry. The effects of inorganic and organic matter in processed water from the hydrothermal-treated biogas slurry were investigated in our research. The changes in inorganic elements such as P, Ca, Mg, Cu, and Zn were detected at different reaction temperatures (90, 120, 150, 180, 210, and 240 ℃) and acid catalytic conditions (0.5, 1, 2, 3, 4, 4.5, and 5 mL 5 M HCl). The changes in organic matter were analyzed using three-dimensional excitation emission matrix fluorescence spectroscopy. With the increase in the hydrothermal reaction temperatures, the quantity of total and inorganic P and the concentration of Ca initially increased and then decreased, concentration of Mg remained constant, while the concentration of Zn and Cu showed a trend of initial decrease and then increase, and the macromolecular organic matter was hydrolyzed into small, soluble molecular organic matter. With the increase in HCl, the amount of released total and inorganic P and concentrations of Ca, Mg, Zn, and Cu increased, and the macromolecular organic matter was hydrolyzed into small molecular organic matter. The hydroponic testing indicated that the processed water has a positive effect on the growth of maize. These results provide critical findings on the reuse of biogas slurry, which is useful for biowaste management and improves carbon neutrality strategy.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 145-157"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Changes in inorganic and organic matters in processed water from hydrothermal-treated biogas slurry\",\"authors\":\"Xiaofei Ge,&nbsp;Tao Zhang\",\"doi\":\"10.1016/j.mset.2022.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon neutrality innovation technologies are a leading research topic in sustainable development. Among these, anaerobic digestion is considered as a better choice for biowaste utilization. However, large amounts of produced biogas slurry hamper the widespread application of anaerobic digestion. The hydrothermal process is regarded as favorable to treat biogas slurry. The effects of inorganic and organic matter in processed water from the hydrothermal-treated biogas slurry were investigated in our research. The changes in inorganic elements such as P, Ca, Mg, Cu, and Zn were detected at different reaction temperatures (90, 120, 150, 180, 210, and 240 ℃) and acid catalytic conditions (0.5, 1, 2, 3, 4, 4.5, and 5 mL 5 M HCl). The changes in organic matter were analyzed using three-dimensional excitation emission matrix fluorescence spectroscopy. With the increase in the hydrothermal reaction temperatures, the quantity of total and inorganic P and the concentration of Ca initially increased and then decreased, concentration of Mg remained constant, while the concentration of Zn and Cu showed a trend of initial decrease and then increase, and the macromolecular organic matter was hydrolyzed into small, soluble molecular organic matter. With the increase in HCl, the amount of released total and inorganic P and concentrations of Ca, Mg, Zn, and Cu increased, and the macromolecular organic matter was hydrolyzed into small molecular organic matter. The hydroponic testing indicated that the processed water has a positive effect on the growth of maize. These results provide critical findings on the reuse of biogas slurry, which is useful for biowaste management and improves carbon neutrality strategy.</p></div>\",\"PeriodicalId\":18283,\"journal\":{\"name\":\"Materials Science for Energy Technologies\",\"volume\":\"6 \",\"pages\":\"Pages 145-157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science for Energy Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589299122000672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299122000672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4

摘要

碳中和创新技术是可持续发展领域的前沿研究课题。其中,厌氧消化被认为是生物垃圾利用的较好选择。然而,大量产生的沼液阻碍了厌氧消化的广泛应用。水热法被认为是处理沼液的有利工艺。研究了水热处理后的沼液中无机和有机物对废水的影响。在不同的反应温度(90、120、150、180、210和240℃)和酸催化条件(0.5、1、2、3、4、4.5和5 mL 5 M HCl)下,检测了无机元素P、Ca、Mg、Cu和Zn的变化。利用三维激发发射矩阵荧光光谱分析了有机物质的变化。随着水热反应温度的升高,总磷和无机磷含量及Ca浓度先升高后降低,Mg浓度保持不变,而Zn和Cu浓度呈现先降低后升高的趋势,大分子有机质被水解为可溶的小分子有机质。随着HCl的增加,总磷和无机磷的释放量以及Ca、Mg、Zn和Cu的浓度增加,大分子有机质被水解成小分子有机质。水培试验表明,处理后的水对玉米的生长有积极的影响。这些结果为沼气浆的再利用提供了重要的发现,这对生物废物管理和改善碳中和战略是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes in inorganic and organic matters in processed water from hydrothermal-treated biogas slurry

Carbon neutrality innovation technologies are a leading research topic in sustainable development. Among these, anaerobic digestion is considered as a better choice for biowaste utilization. However, large amounts of produced biogas slurry hamper the widespread application of anaerobic digestion. The hydrothermal process is regarded as favorable to treat biogas slurry. The effects of inorganic and organic matter in processed water from the hydrothermal-treated biogas slurry were investigated in our research. The changes in inorganic elements such as P, Ca, Mg, Cu, and Zn were detected at different reaction temperatures (90, 120, 150, 180, 210, and 240 ℃) and acid catalytic conditions (0.5, 1, 2, 3, 4, 4.5, and 5 mL 5 M HCl). The changes in organic matter were analyzed using three-dimensional excitation emission matrix fluorescence spectroscopy. With the increase in the hydrothermal reaction temperatures, the quantity of total and inorganic P and the concentration of Ca initially increased and then decreased, concentration of Mg remained constant, while the concentration of Zn and Cu showed a trend of initial decrease and then increase, and the macromolecular organic matter was hydrolyzed into small, soluble molecular organic matter. With the increase in HCl, the amount of released total and inorganic P and concentrations of Ca, Mg, Zn, and Cu increased, and the macromolecular organic matter was hydrolyzed into small molecular organic matter. The hydroponic testing indicated that the processed water has a positive effect on the growth of maize. These results provide critical findings on the reuse of biogas slurry, which is useful for biowaste management and improves carbon neutrality strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
期刊最新文献
Li-S-B Glass-Ceramics: A Novel electrode materials for energy storage technology Selective hydrogenation of 1,3-butadiene to butenes on ceria-supported Pd, Ni and PdNi catalysts: Combined experimental and DFT outlook Compositing LaSrMnO3 perovskite and graphene oxide nanoribbons for highly stable asymmetric electrochemical supercapacitors Facile synthesis and electrochemical performance of bacterial cellulose/reduced graphene oxide/NiCo-layered double hydroxide composite film for self-standing supercapacitor electrode A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1