Jingyu Zhang, Mingjin Zhang, Yongle Li, Xuan Huang, Z. Zheng
{"title":"考虑遮蔽效应的特拉斯梁上高空车辆的风洞试验气动特性","authors":"Jingyu Zhang, Mingjin Zhang, Yongle Li, Xuan Huang, Z. Zheng","doi":"10.7250/bjrbe.2020-15.473","DOIUrl":null,"url":null,"abstract":"Aerodynamic characteristics of vehicles are directly related to their running safety, especially for the high-sided vehicles. In order to study the aerodynamic characteristics under multiple sheltering conditions, a complex large scale (1:20.4) truss model and three high-sided vehicles including articulated lorry, travelling bus and commercial van models with the same scale were built. The aerodynamic coefficients under various sheltering effects of wind barriers with different heights and porosities, bridge tower and the vehicle on the adjacent lane were measured. According to the results, wind barriers can effectively reduce wind speed behind them, thus decreasing the wind load acting on the vehicle, which causes the decrease of the aerodynamic response of all three vehicles. However, the influence at the leeward side is limited due to installation of central stabilizers. When the vehicle passes through the bridge tower, a sudden change occurs, the aerodynamic coefficients decrease and fluctuate in varying degrees, especially for the commercial van. When the vehicle moves in different lanes behind the bridge tower, the sheltering effect of the tower on the aerodynamic coefficient in Lane 1 is much greater than that in Lane 2. With regard to the interference between two vehicles on the adjacent lanes, the relative windward area between the test vehicle and the interference vehicle greatly affects the aerodynamics of the test vehicle.","PeriodicalId":55402,"journal":{"name":"Baltic Journal of Road and Bridge Engineering","volume":"15 1","pages":"66-88"},"PeriodicalIF":0.6000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Aerodynamics of High-Sided Vehicles on Truss Girder Considering Sheltering Effect by Wind Tunnel Tests\",\"authors\":\"Jingyu Zhang, Mingjin Zhang, Yongle Li, Xuan Huang, Z. Zheng\",\"doi\":\"10.7250/bjrbe.2020-15.473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerodynamic characteristics of vehicles are directly related to their running safety, especially for the high-sided vehicles. In order to study the aerodynamic characteristics under multiple sheltering conditions, a complex large scale (1:20.4) truss model and three high-sided vehicles including articulated lorry, travelling bus and commercial van models with the same scale were built. The aerodynamic coefficients under various sheltering effects of wind barriers with different heights and porosities, bridge tower and the vehicle on the adjacent lane were measured. According to the results, wind barriers can effectively reduce wind speed behind them, thus decreasing the wind load acting on the vehicle, which causes the decrease of the aerodynamic response of all three vehicles. However, the influence at the leeward side is limited due to installation of central stabilizers. When the vehicle passes through the bridge tower, a sudden change occurs, the aerodynamic coefficients decrease and fluctuate in varying degrees, especially for the commercial van. When the vehicle moves in different lanes behind the bridge tower, the sheltering effect of the tower on the aerodynamic coefficient in Lane 1 is much greater than that in Lane 2. With regard to the interference between two vehicles on the adjacent lanes, the relative windward area between the test vehicle and the interference vehicle greatly affects the aerodynamics of the test vehicle.\",\"PeriodicalId\":55402,\"journal\":{\"name\":\"Baltic Journal of Road and Bridge Engineering\",\"volume\":\"15 1\",\"pages\":\"66-88\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baltic Journal of Road and Bridge Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7250/bjrbe.2020-15.473\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Journal of Road and Bridge Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7250/bjrbe.2020-15.473","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Aerodynamics of High-Sided Vehicles on Truss Girder Considering Sheltering Effect by Wind Tunnel Tests
Aerodynamic characteristics of vehicles are directly related to their running safety, especially for the high-sided vehicles. In order to study the aerodynamic characteristics under multiple sheltering conditions, a complex large scale (1:20.4) truss model and three high-sided vehicles including articulated lorry, travelling bus and commercial van models with the same scale were built. The aerodynamic coefficients under various sheltering effects of wind barriers with different heights and porosities, bridge tower and the vehicle on the adjacent lane were measured. According to the results, wind barriers can effectively reduce wind speed behind them, thus decreasing the wind load acting on the vehicle, which causes the decrease of the aerodynamic response of all three vehicles. However, the influence at the leeward side is limited due to installation of central stabilizers. When the vehicle passes through the bridge tower, a sudden change occurs, the aerodynamic coefficients decrease and fluctuate in varying degrees, especially for the commercial van. When the vehicle moves in different lanes behind the bridge tower, the sheltering effect of the tower on the aerodynamic coefficient in Lane 1 is much greater than that in Lane 2. With regard to the interference between two vehicles on the adjacent lanes, the relative windward area between the test vehicle and the interference vehicle greatly affects the aerodynamics of the test vehicle.
期刊介绍:
THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING AREAS OF RESEARCH:
road and bridge research and design,
road construction materials and technologies,
bridge construction materials and technologies,
road and bridge repair,
road and bridge maintenance,
traffic safety,
road and bridge information technologies,
environmental issues,
road climatology,
low-volume roads,
normative documentation,
quality management and assurance,
road infrastructure and its assessment,
asset management,
road and bridge construction financing,
specialist pre-service and in-service training;