Hong-Dar Lin, Yi-Jing Huang, Victoria Chiu, Y. Chiu
{"title":"具有加班和随机报废特征的多项目生产-零售商集成系统的轮换周期时间和交货决策","authors":"Hong-Dar Lin, Yi-Jing Huang, Victoria Chiu, Y. Chiu","doi":"10.22201/icat.24486736e.2022.20.4.1080","DOIUrl":null,"url":null,"abstract":"A multi-item producer-retailer integrated system featuring overtime and random scrap is studied. The objectives are to jointly decide the most economic rotation fabrication cycle time and distribution of products. In order to meet the increasing demands of diversified end items, production managers today need to plan a multiproduct fabrication schedule and to expedite both manufacturing and transportation times so that they can meet product demands as quickly as possible. Also, due to potential uncontrollable reasons, scrap items are generated randomly in a real fabrication process. To address the aforementioned issues, this study examines a multi-item producer-retailer integrated system featuring overtime and random scrap. We build a mathematical model to interpret the proposed multi-item producer-retailer integrated system which incorporates shipping and retailer’s holding cost. The Hessian matrix equations are used for solving the optimality of the system. Diverse important system information can now be exposed to backing managerial decision makings, which includes individual and combined influences of variations in particular system factor(s) (such as scrap rate and overtime related parameters) on the specific system performance.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rotation cycle time and delivery decision for a multi-item producer-retailer integrated system featuring overtime and random scrap\",\"authors\":\"Hong-Dar Lin, Yi-Jing Huang, Victoria Chiu, Y. Chiu\",\"doi\":\"10.22201/icat.24486736e.2022.20.4.1080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-item producer-retailer integrated system featuring overtime and random scrap is studied. The objectives are to jointly decide the most economic rotation fabrication cycle time and distribution of products. In order to meet the increasing demands of diversified end items, production managers today need to plan a multiproduct fabrication schedule and to expedite both manufacturing and transportation times so that they can meet product demands as quickly as possible. Also, due to potential uncontrollable reasons, scrap items are generated randomly in a real fabrication process. To address the aforementioned issues, this study examines a multi-item producer-retailer integrated system featuring overtime and random scrap. We build a mathematical model to interpret the proposed multi-item producer-retailer integrated system which incorporates shipping and retailer’s holding cost. The Hessian matrix equations are used for solving the optimality of the system. Diverse important system information can now be exposed to backing managerial decision makings, which includes individual and combined influences of variations in particular system factor(s) (such as scrap rate and overtime related parameters) on the specific system performance.\",\"PeriodicalId\":15073,\"journal\":{\"name\":\"Journal of Applied Research and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22201/icat.24486736e.2022.20.4.1080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2022.20.4.1080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Rotation cycle time and delivery decision for a multi-item producer-retailer integrated system featuring overtime and random scrap
A multi-item producer-retailer integrated system featuring overtime and random scrap is studied. The objectives are to jointly decide the most economic rotation fabrication cycle time and distribution of products. In order to meet the increasing demands of diversified end items, production managers today need to plan a multiproduct fabrication schedule and to expedite both manufacturing and transportation times so that they can meet product demands as quickly as possible. Also, due to potential uncontrollable reasons, scrap items are generated randomly in a real fabrication process. To address the aforementioned issues, this study examines a multi-item producer-retailer integrated system featuring overtime and random scrap. We build a mathematical model to interpret the proposed multi-item producer-retailer integrated system which incorporates shipping and retailer’s holding cost. The Hessian matrix equations are used for solving the optimality of the system. Diverse important system information can now be exposed to backing managerial decision makings, which includes individual and combined influences of variations in particular system factor(s) (such as scrap rate and overtime related parameters) on the specific system performance.
期刊介绍:
The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work.
The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs.
JART classifies research into the following main fields:
-Material Science:
Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors.
-Computer Science:
Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering.
-Industrial Engineering:
Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies
-Electronic Engineering:
Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation.
-Instrumentation engineering and science:
Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.