腰椎CT衰减测量的观察者间可靠性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-07-01 DOI:10.1016/j.jocd.2023.101404
Gary K. Schneider DO (Primary Author Fellow Physician)
{"title":"腰椎CT衰减测量的观察者间可靠性","authors":"Gary K. Schneider DO (Primary Author Fellow Physician)","doi":"10.1016/j.jocd.2023.101404","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose/Aims</h3><p>To assess reliability of lumbar vertebral body computed tomography (CT) attenuation measurement between different observers.</p></div><div><h3>Rationale/Background</h3><p>The International Society for Clinical Densitometry<span><span> (ISCD) guidelines for DXA interpretation include assessment of “opportunistic CT” as a surrogate for DXA scan using L1 vertebral body attenuation, with threshold &gt;150 and &lt; 100 Hounsfield units (HU) estimating the likelihood of normal bone density and osteoporosis, respectively. ISCD guidelines include precision analysis of DXA, but there are no formal guidelines for assessing precision error when assessing bone mineral density (BMD) by </span>CT attenuation of lumbar vertebral body. Measurement of precision have been published and we sought to determine inter-rater reliability and to assess precision by test-retest of the same patient.</span></p></div><div><h3>Methods</h3><p>Utilizing Visage PACS to view CT images, six observers each measured CT attenuation of L1 and L5 vertebral bodies of the same set of 31 separate CT scans. Measurements were performed as previously described.3 Average HU within an elliptical region of interest (ROI) of the L1 and L5 vertebral bodies were recorded for each measurement, as well as L1 and L5 ROI area. Intra-class correlation (ICC) was calculated for each of these variables, with &gt;0.9 indicating excellent agreement, 0.75-0.9 indicating good agreement, 0.5-0.75 indicating moderate agreement, and &lt; 0.5 indicating poor agreement. ICC was calculated of L1 attenuation measured by a single observer on a separate set of 12 patients with CT scans done within 30 days of each other. Additionally we calculated root mean square–coefficient of variation (RMS-CV) of L1 vertebral body attenuation on this set of 12 patients.</p></div><div><h3>Results</h3><p>ICC of L1 attenuation and L5 attenuation were 0.94 and 0.92, respectively, indicating excellent agreement between observers. ICC of ROI areas at L1 and L5 ROI were 0.04 and 0.03, respectively, indicating poor agreement (Table 1). ICC of L1 CT attenuation on repeat scans within 30 days by a single observer was 0.97, indicating excellent agreement between two readings . Root mean square-SD was 14.6 HU. Least significant change was 40.4 HU. Percent coefficient of variation was 34.6.</p></div><div><h3>Implications</h3><p>This study demonstrates that measurement of CT attenuation at L1 and L5 between different observers is reliable while area of region of interest at L1 and L5 between observers showed poor agreement. In test-retest of scans performed within 30 days on the same patient, a short time period in which little change is expected, measurement of CT attenuation also showed excellent agreement.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-observer Reliability of CT Attenuation Measurement of Lumbar Vertebral Bodies\",\"authors\":\"Gary K. Schneider DO (Primary Author Fellow Physician)\",\"doi\":\"10.1016/j.jocd.2023.101404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose/Aims</h3><p>To assess reliability of lumbar vertebral body computed tomography (CT) attenuation measurement between different observers.</p></div><div><h3>Rationale/Background</h3><p>The International Society for Clinical Densitometry<span><span> (ISCD) guidelines for DXA interpretation include assessment of “opportunistic CT” as a surrogate for DXA scan using L1 vertebral body attenuation, with threshold &gt;150 and &lt; 100 Hounsfield units (HU) estimating the likelihood of normal bone density and osteoporosis, respectively. ISCD guidelines include precision analysis of DXA, but there are no formal guidelines for assessing precision error when assessing bone mineral density (BMD) by </span>CT attenuation of lumbar vertebral body. Measurement of precision have been published and we sought to determine inter-rater reliability and to assess precision by test-retest of the same patient.</span></p></div><div><h3>Methods</h3><p>Utilizing Visage PACS to view CT images, six observers each measured CT attenuation of L1 and L5 vertebral bodies of the same set of 31 separate CT scans. Measurements were performed as previously described.3 Average HU within an elliptical region of interest (ROI) of the L1 and L5 vertebral bodies were recorded for each measurement, as well as L1 and L5 ROI area. Intra-class correlation (ICC) was calculated for each of these variables, with &gt;0.9 indicating excellent agreement, 0.75-0.9 indicating good agreement, 0.5-0.75 indicating moderate agreement, and &lt; 0.5 indicating poor agreement. ICC was calculated of L1 attenuation measured by a single observer on a separate set of 12 patients with CT scans done within 30 days of each other. Additionally we calculated root mean square–coefficient of variation (RMS-CV) of L1 vertebral body attenuation on this set of 12 patients.</p></div><div><h3>Results</h3><p>ICC of L1 attenuation and L5 attenuation were 0.94 and 0.92, respectively, indicating excellent agreement between observers. ICC of ROI areas at L1 and L5 ROI were 0.04 and 0.03, respectively, indicating poor agreement (Table 1). ICC of L1 CT attenuation on repeat scans within 30 days by a single observer was 0.97, indicating excellent agreement between two readings . Root mean square-SD was 14.6 HU. Least significant change was 40.4 HU. Percent coefficient of variation was 34.6.</p></div><div><h3>Implications</h3><p>This study demonstrates that measurement of CT attenuation at L1 and L5 between different observers is reliable while area of region of interest at L1 and L5 between observers showed poor agreement. In test-retest of scans performed within 30 days on the same patient, a short time period in which little change is expected, measurement of CT attenuation also showed excellent agreement.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1094695023000549\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094695023000549","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的评估不同观测者腰椎椎体CT (computer tomography, CT)衰减测量的可靠性。国际临床密度测量学会(ISCD) DXA解释指南包括评估“机会性CT”作为使用L1椎体衰减的DXA扫描的替代品,阈值为>150和<100 Hounsfield单位(HU)分别估计正常骨密度和骨质疏松的可能性。ISCD指南包括DXA的精度分析,但没有正式的指南来评估腰椎椎体CT衰减评估骨密度(BMD)时的精度误差。精确度的测量已经发表,我们试图通过对同一患者的重测来确定评估者之间的可靠性和评估精确度。方法利用Visage PACS查看CT图像,6名观察员分别测量同一组31个单独CT扫描的L1和L5椎体的CT衰减。如前所述进行测量记录每次测量L1和L5椎体椭圆感兴趣区域(ROI)内的平均HU,以及L1和L5 ROI区域。对每个变量计算类内相关性(ICC), >0.9表示非常一致,0.75-0.9表示良好一致,0.5-0.75表示中等一致,<0.5表示一致性差。ICC是由单个观察者对12名彼此在30天内进行CT扫描的单独一组患者测量L1衰减来计算的。此外,我们计算了这组12例患者L1椎体衰减的均方根变异系数(RMS-CV)。结果L1衰减和L5衰减的icc分别为0.94和0.92,表明观察者之间的一致性很好。L1和L5 ROI区域的ICC分别为0.04和0.03,表明一致性较差(表1)。单个观察者在30天内重复扫描L1 CT衰减的ICC为0.97,表明两个读数之间的一致性很好。均方根标准差为14.6 HU。变化最不显著的是40.4 HU。百分比变异系数为34.6。本研究表明,不同观察者之间L1和L5处CT衰减的测量是可靠的,而观察者之间L1和L5处感兴趣区域的面积显示不一致。在同一患者30天内进行的扫描复测中,预计变化不大的短时间内,CT衰减的测量也显示出极好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inter-observer Reliability of CT Attenuation Measurement of Lumbar Vertebral Bodies

Purpose/Aims

To assess reliability of lumbar vertebral body computed tomography (CT) attenuation measurement between different observers.

Rationale/Background

The International Society for Clinical Densitometry (ISCD) guidelines for DXA interpretation include assessment of “opportunistic CT” as a surrogate for DXA scan using L1 vertebral body attenuation, with threshold >150 and < 100 Hounsfield units (HU) estimating the likelihood of normal bone density and osteoporosis, respectively. ISCD guidelines include precision analysis of DXA, but there are no formal guidelines for assessing precision error when assessing bone mineral density (BMD) by CT attenuation of lumbar vertebral body. Measurement of precision have been published and we sought to determine inter-rater reliability and to assess precision by test-retest of the same patient.

Methods

Utilizing Visage PACS to view CT images, six observers each measured CT attenuation of L1 and L5 vertebral bodies of the same set of 31 separate CT scans. Measurements were performed as previously described.3 Average HU within an elliptical region of interest (ROI) of the L1 and L5 vertebral bodies were recorded for each measurement, as well as L1 and L5 ROI area. Intra-class correlation (ICC) was calculated for each of these variables, with >0.9 indicating excellent agreement, 0.75-0.9 indicating good agreement, 0.5-0.75 indicating moderate agreement, and < 0.5 indicating poor agreement. ICC was calculated of L1 attenuation measured by a single observer on a separate set of 12 patients with CT scans done within 30 days of each other. Additionally we calculated root mean square–coefficient of variation (RMS-CV) of L1 vertebral body attenuation on this set of 12 patients.

Results

ICC of L1 attenuation and L5 attenuation were 0.94 and 0.92, respectively, indicating excellent agreement between observers. ICC of ROI areas at L1 and L5 ROI were 0.04 and 0.03, respectively, indicating poor agreement (Table 1). ICC of L1 CT attenuation on repeat scans within 30 days by a single observer was 0.97, indicating excellent agreement between two readings . Root mean square-SD was 14.6 HU. Least significant change was 40.4 HU. Percent coefficient of variation was 34.6.

Implications

This study demonstrates that measurement of CT attenuation at L1 and L5 between different observers is reliable while area of region of interest at L1 and L5 between observers showed poor agreement. In test-retest of scans performed within 30 days on the same patient, a short time period in which little change is expected, measurement of CT attenuation also showed excellent agreement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1