利用Arima模型对斯洛伐克化石燃料消耗的时间序列分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-01 DOI:10.2478/ama-2023-0004
M. Michalková, I. Pobočíková
{"title":"利用Arima模型对斯洛伐克化石燃料消耗的时间序列分析","authors":"M. Michalková, I. Pobočíková","doi":"10.2478/ama-2023-0004","DOIUrl":null,"url":null,"abstract":"Abstract According to the Green Deal, the carbon neutrality of the European Union (EU) should be reached partly by the transition from fossil fuels to alternative renewable sources. However, fossil fuels still play an essential role in energy production, and are widely used in the world with no alternative to be completely replaced with, so far. In recent years, we have observed the rapidly growing prices of commodities such as oil or gas. The analysis of past fossil fuels consumption might contribute significantly to the responsible formulation of the energy policy of each country, reflected in policies of related organisations and the industrial sector. Over the years, a number of papers have been published on modelling production and consumption of fossil and renewable energy sources on the level of national economics, industrial sectors and households, exploiting and comparing a variety of approaches. In this paper, we model the consumption of fossil fuels (gas and coal) in Slovakia based on the annual data during the years 1965–2020. To our knowledge, no such model, which analyses historical data and provides forecasts for future consumption of gas and coal, respectively, in Slovakia, is currently available in the literature. For building the model, we have used the Box–Jenkins methodology. Because of the presence of trend in the data, we have considered the autoregressive integrated moving average (ARIMA (p,d,q)) model. By fitting models with various combinations of parameters p, d, q, the best fitting model has been chosen based on the value of Akaike’s information criterion. According to this, the model for coal consumption is ARIMA(0, 2, 1) and for gas consumption it is ARIMA(2, 2, 2).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time Series Analysis of Fossil Fuels Consumption in Slovakia by Arima Model\",\"authors\":\"M. Michalková, I. Pobočíková\",\"doi\":\"10.2478/ama-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract According to the Green Deal, the carbon neutrality of the European Union (EU) should be reached partly by the transition from fossil fuels to alternative renewable sources. However, fossil fuels still play an essential role in energy production, and are widely used in the world with no alternative to be completely replaced with, so far. In recent years, we have observed the rapidly growing prices of commodities such as oil or gas. The analysis of past fossil fuels consumption might contribute significantly to the responsible formulation of the energy policy of each country, reflected in policies of related organisations and the industrial sector. Over the years, a number of papers have been published on modelling production and consumption of fossil and renewable energy sources on the level of national economics, industrial sectors and households, exploiting and comparing a variety of approaches. In this paper, we model the consumption of fossil fuels (gas and coal) in Slovakia based on the annual data during the years 1965–2020. To our knowledge, no such model, which analyses historical data and provides forecasts for future consumption of gas and coal, respectively, in Slovakia, is currently available in the literature. For building the model, we have used the Box–Jenkins methodology. Because of the presence of trend in the data, we have considered the autoregressive integrated moving average (ARIMA (p,d,q)) model. By fitting models with various combinations of parameters p, d, q, the best fitting model has been chosen based on the value of Akaike’s information criterion. According to this, the model for coal consumption is ARIMA(0, 2, 1) and for gas consumption it is ARIMA(2, 2, 2).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ama-2023-0004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

摘要根据绿色协议,欧盟(EU)的碳中和部分应通过从化石燃料向替代可再生能源的过渡来实现。然而,化石燃料仍然在能源生产中发挥着重要作用,并且在世界上广泛使用,迄今为止没有任何替代品可以完全取代。近年来,我们观察到石油或天然气等大宗商品的价格迅速上涨。对过去化石燃料消费的分析可能有助于负责任地制定每个国家的能源政策,反映在相关组织和工业部门的政策中。多年来,发表了许多论文,从国民经济、工业部门和家庭层面对化石能源和可再生能源的生产和消费进行建模,利用和比较了各种方法。在本文中,我们根据1965年至2020年的年度数据,对斯洛伐克的化石燃料(天然气和煤炭)消费量进行了建模。据我们所知,目前文献中没有这样的模型,该模型分别分析历史数据并预测斯洛伐克未来的天然气和煤炭消费量。为了构建模型,我们使用了Box-Jenkins方法。由于数据中存在趋势,我们考虑了自回归综合移动平均(ARIMA(p,d,q))模型。通过用参数p、d、q的各种组合拟合模型,根据Akaike信息准则的值选择了最佳拟合模型。据此,煤炭消耗的模型为ARIMA(0,2,1),天然气消耗的模型则为ARIMA(2,2,2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time Series Analysis of Fossil Fuels Consumption in Slovakia by Arima Model
Abstract According to the Green Deal, the carbon neutrality of the European Union (EU) should be reached partly by the transition from fossil fuels to alternative renewable sources. However, fossil fuels still play an essential role in energy production, and are widely used in the world with no alternative to be completely replaced with, so far. In recent years, we have observed the rapidly growing prices of commodities such as oil or gas. The analysis of past fossil fuels consumption might contribute significantly to the responsible formulation of the energy policy of each country, reflected in policies of related organisations and the industrial sector. Over the years, a number of papers have been published on modelling production and consumption of fossil and renewable energy sources on the level of national economics, industrial sectors and households, exploiting and comparing a variety of approaches. In this paper, we model the consumption of fossil fuels (gas and coal) in Slovakia based on the annual data during the years 1965–2020. To our knowledge, no such model, which analyses historical data and provides forecasts for future consumption of gas and coal, respectively, in Slovakia, is currently available in the literature. For building the model, we have used the Box–Jenkins methodology. Because of the presence of trend in the data, we have considered the autoregressive integrated moving average (ARIMA (p,d,q)) model. By fitting models with various combinations of parameters p, d, q, the best fitting model has been chosen based on the value of Akaike’s information criterion. According to this, the model for coal consumption is ARIMA(0, 2, 1) and for gas consumption it is ARIMA(2, 2, 2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Clinical Practice Guidelines on Palliative Sedation Around the World: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1