{"title":"CA-CD:基于迁移学习方法的新中文点击诱饵数据集的上下文感知点击诱饵检测","authors":"Hei-Chia Wang, Martinus Maslim, Hung-Yu Liu","doi":"10.1108/dta-03-2023-0072","DOIUrl":null,"url":null,"abstract":"PurposeA clickbait is a deceptive headline designed to boost ad revenue without presenting closely relevant content. There are numerous negative repercussions of clickbait, such as causing viewers to feel tricked and unhappy, causing long-term confusion, and even attracting cyber criminals. Automatic detection algorithms for clickbait have been developed to address this issue. The fact that there is only one semantic representation for the same term and a limited dataset in Chinese is a need for the existing technologies for detecting clickbait. This study aims to solve the limitations of automated clickbait detection in the Chinese dataset.Design/methodology/approachThis study combines both to train the model to capture the probable relationship between clickbait news headlines and news content. In addition, part-of-speech elements are used to generate the most appropriate semantic representation for clickbait detection, improving clickbait detection performance.FindingsThis research successfully compiled a dataset containing up to 20,896 Chinese clickbait news articles. This collection contains news headlines, articles, categories and supplementary metadata. The suggested context-aware clickbait detection (CA-CD) model outperforms existing clickbait detection approaches on many criteria, demonstrating the proposed strategy's efficacy.Originality/valueThe originality of this study resides in the newly compiled Chinese clickbait dataset and contextual semantic representation-based clickbait detection approach employing transfer learning. This method can modify the semantic representation of each word based on context and assist the model in more precisely interpreting the original meaning of news articles.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CA-CD: context-aware clickbait detection using new Chinese clickbait dataset with transfer learning method\",\"authors\":\"Hei-Chia Wang, Martinus Maslim, Hung-Yu Liu\",\"doi\":\"10.1108/dta-03-2023-0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeA clickbait is a deceptive headline designed to boost ad revenue without presenting closely relevant content. There are numerous negative repercussions of clickbait, such as causing viewers to feel tricked and unhappy, causing long-term confusion, and even attracting cyber criminals. Automatic detection algorithms for clickbait have been developed to address this issue. The fact that there is only one semantic representation for the same term and a limited dataset in Chinese is a need for the existing technologies for detecting clickbait. This study aims to solve the limitations of automated clickbait detection in the Chinese dataset.Design/methodology/approachThis study combines both to train the model to capture the probable relationship between clickbait news headlines and news content. In addition, part-of-speech elements are used to generate the most appropriate semantic representation for clickbait detection, improving clickbait detection performance.FindingsThis research successfully compiled a dataset containing up to 20,896 Chinese clickbait news articles. This collection contains news headlines, articles, categories and supplementary metadata. The suggested context-aware clickbait detection (CA-CD) model outperforms existing clickbait detection approaches on many criteria, demonstrating the proposed strategy's efficacy.Originality/valueThe originality of this study resides in the newly compiled Chinese clickbait dataset and contextual semantic representation-based clickbait detection approach employing transfer learning. This method can modify the semantic representation of each word based on context and assist the model in more precisely interpreting the original meaning of news articles.\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-03-2023-0072\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-03-2023-0072","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
CA-CD: context-aware clickbait detection using new Chinese clickbait dataset with transfer learning method
PurposeA clickbait is a deceptive headline designed to boost ad revenue without presenting closely relevant content. There are numerous negative repercussions of clickbait, such as causing viewers to feel tricked and unhappy, causing long-term confusion, and even attracting cyber criminals. Automatic detection algorithms for clickbait have been developed to address this issue. The fact that there is only one semantic representation for the same term and a limited dataset in Chinese is a need for the existing technologies for detecting clickbait. This study aims to solve the limitations of automated clickbait detection in the Chinese dataset.Design/methodology/approachThis study combines both to train the model to capture the probable relationship between clickbait news headlines and news content. In addition, part-of-speech elements are used to generate the most appropriate semantic representation for clickbait detection, improving clickbait detection performance.FindingsThis research successfully compiled a dataset containing up to 20,896 Chinese clickbait news articles. This collection contains news headlines, articles, categories and supplementary metadata. The suggested context-aware clickbait detection (CA-CD) model outperforms existing clickbait detection approaches on many criteria, demonstrating the proposed strategy's efficacy.Originality/valueThe originality of this study resides in the newly compiled Chinese clickbait dataset and contextual semantic representation-based clickbait detection approach employing transfer learning. This method can modify the semantic representation of each word based on context and assist the model in more precisely interpreting the original meaning of news articles.