强迫振荡试验中通用海底模块的水动力系数——结构元件的重要性

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme Pub Date : 2023-04-11 DOI:10.1115/1.4062293
M. Prsic, F. Solaas, T. Kristiansen
{"title":"强迫振荡试验中通用海底模块的水动力系数——结构元件的重要性","authors":"M. Prsic, F. Solaas, T. Kristiansen","doi":"10.1115/1.4062293","DOIUrl":null,"url":null,"abstract":"\n A systematic study of hydrodynamic coefficients for simplified subsea modules has been performed to support the estimation of the coefficients needed for planning of subsea installation operations. The coefficients are assessed for a nearly two-dimensional test setup. The tests are performed as forced oscillations at various amplitudes and periods, representing the forces on the module lowered through the water column. The importance of each of the main components of the subsea modules – mudmat, protection roof and process equipment of different shapes inside the modules are studied at fully submerged condition. Results for the module elements, generic contents and different combinations of these elements are presented. For the tested modules, damping is generally the dominating hydrodynamic force. However, the presence of the content inside the modules will generally increase the importance of added mass. Estimation of the hydrodynamic coefficients by summation of the coefficients for the individual structure elements generally overestimates the damping, compared to the coefficients measured for the complete modules. For added mass, estimation based on summation gives generally good results.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic coefficients of generic subsea modules in forced oscillation tests – importance of structural elements\",\"authors\":\"M. Prsic, F. Solaas, T. Kristiansen\",\"doi\":\"10.1115/1.4062293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A systematic study of hydrodynamic coefficients for simplified subsea modules has been performed to support the estimation of the coefficients needed for planning of subsea installation operations. The coefficients are assessed for a nearly two-dimensional test setup. The tests are performed as forced oscillations at various amplitudes and periods, representing the forces on the module lowered through the water column. The importance of each of the main components of the subsea modules – mudmat, protection roof and process equipment of different shapes inside the modules are studied at fully submerged condition. Results for the module elements, generic contents and different combinations of these elements are presented. For the tested modules, damping is generally the dominating hydrodynamic force. However, the presence of the content inside the modules will generally increase the importance of added mass. Estimation of the hydrodynamic coefficients by summation of the coefficients for the individual structure elements generally overestimates the damping, compared to the coefficients measured for the complete modules. For added mass, estimation based on summation gives generally good results.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062293\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062293","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

已经对简化海底模块的流体动力学系数进行了系统研究,以支持海底安装操作规划所需系数的估计。这些系数是针对几乎二维的测试设置进行评估的。测试以不同振幅和周期的强迫振荡形式进行,代表通过水柱下降的模块上的力。在完全浸没的条件下,研究了海底模块的每个主要部件的重要性——模块内的泥垫、保护屋顶和不同形状的工艺设备。给出了模块元素、通用内容和这些元素的不同组合的结果。对于测试的模块,阻尼通常是主要的流体动力。然而,模块内内容物的存在通常会增加附加质量的重要性。与整个模块测量的系数相比,通过对单个结构元件的系数求和来估计流体动力学系数通常会高估阻尼。对于附加质量,基于求和的估计通常会给出良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrodynamic coefficients of generic subsea modules in forced oscillation tests – importance of structural elements
A systematic study of hydrodynamic coefficients for simplified subsea modules has been performed to support the estimation of the coefficients needed for planning of subsea installation operations. The coefficients are assessed for a nearly two-dimensional test setup. The tests are performed as forced oscillations at various amplitudes and periods, representing the forces on the module lowered through the water column. The importance of each of the main components of the subsea modules – mudmat, protection roof and process equipment of different shapes inside the modules are studied at fully submerged condition. Results for the module elements, generic contents and different combinations of these elements are presented. For the tested modules, damping is generally the dominating hydrodynamic force. However, the presence of the content inside the modules will generally increase the importance of added mass. Estimation of the hydrodynamic coefficients by summation of the coefficients for the individual structure elements generally overestimates the damping, compared to the coefficients measured for the complete modules. For added mass, estimation based on summation gives generally good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
6.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events. Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.
期刊最新文献
PEridynamic Analysis of Tubular Joints of Offshore Jacket Structure Underwater impulsive response of sandwich structure with multilayer foam core Numerical Study on the Automatic Ballast Control of a Floating Dock Gravity wave interaction with a composite pile-rock breakwater Modelling Green Water Load on A Deck Mounted Circular Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1