通过外磁场波形监测同步发电机状态的设备

L. O. S. Grillo, C. A. C. Wengerkievicz, H. F. Santos, N. Batistela, P. Kuo-Peng, N. Sadowski, T. K. Matsuo, C. Souza, L. M. D. Freitas, R. J. Nascimento
{"title":"通过外磁场波形监测同步发电机状态的设备","authors":"L. O. S. Grillo, C. A. C. Wengerkievicz, H. F. Santos, N. Batistela, P. Kuo-Peng, N. Sadowski, T. K. Matsuo, C. Souza, L. M. D. Freitas, R. J. Nascimento","doi":"10.1590/2179-10742022v21i4268102","DOIUrl":null,"url":null,"abstract":"— This paper presents an equipment for monitoring synchronous generators condition through characteristics of the time derivative of the external magnetic field. The developed monitoring methodology allows the identification of established or incipient faults, by detecting changes in the magnetic signature of the synchronous generator. In this methodology, the measurement of signals outside the machine gives this equipment a non-invasive characteristic, allowing its monitoring without interfering or disturbing its operation. The developed system includes the specification of magnetic field sensors, signal measurement and processing equipment, as well as software for analysis and monitoring. The validation of the methodology used in this system was carried out through the analysis of experimental data, presenting efficient results in the detection of electrical and mechanical faults in synchronous generators of an experimental test bench and a hydroelectric power plant. As a result, the commercial specification of this equipment was obtained and two units were implemented in a hydroelectric power plant to monitor 305 MVA synchronous generators.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Equipment for Monitoring Synchronous Generators Condition through External Magnetic Field Waveforms\",\"authors\":\"L. O. S. Grillo, C. A. C. Wengerkievicz, H. F. Santos, N. Batistela, P. Kuo-Peng, N. Sadowski, T. K. Matsuo, C. Souza, L. M. D. Freitas, R. J. Nascimento\",\"doi\":\"10.1590/2179-10742022v21i4268102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— This paper presents an equipment for monitoring synchronous generators condition through characteristics of the time derivative of the external magnetic field. The developed monitoring methodology allows the identification of established or incipient faults, by detecting changes in the magnetic signature of the synchronous generator. In this methodology, the measurement of signals outside the machine gives this equipment a non-invasive characteristic, allowing its monitoring without interfering or disturbing its operation. The developed system includes the specification of magnetic field sensors, signal measurement and processing equipment, as well as software for analysis and monitoring. The validation of the methodology used in this system was carried out through the analysis of experimental data, presenting efficient results in the detection of electrical and mechanical faults in synchronous generators of an experimental test bench and a hydroelectric power plant. As a result, the commercial specification of this equipment was obtained and two units were implemented in a hydroelectric power plant to monitor 305 MVA synchronous generators.\",\"PeriodicalId\":53567,\"journal\":{\"name\":\"Journal of Microwaves, Optoelectronics and Electromagnetic Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microwaves, Optoelectronics and Electromagnetic Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2179-10742022v21i4268102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742022v21i4268102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

--本文介绍了一种利用外磁场时间导数特性监测同步发电机状态的装置。所开发的监测方法允许通过检测同步发电机磁特征的变化来识别已建立或早期故障。在这种方法中,对机器外部信号的测量使该设备具有非侵入性特征,允许在不干扰或干扰其操作的情况下对其进行监测。开发的系统包括磁场传感器、信号测量和处理设备的规范,以及用于分析和监测的软件。通过对实验数据的分析,对该系统中使用的方法进行了验证,在实验台和水电站同步发电机的电气和机械故障检测中取得了有效的结果。因此,获得了该设备的商业规范,并在一个水力发电厂安装了两个机组,以监测305 MVA同步发电机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Equipment for Monitoring Synchronous Generators Condition through External Magnetic Field Waveforms
— This paper presents an equipment for monitoring synchronous generators condition through characteristics of the time derivative of the external magnetic field. The developed monitoring methodology allows the identification of established or incipient faults, by detecting changes in the magnetic signature of the synchronous generator. In this methodology, the measurement of signals outside the machine gives this equipment a non-invasive characteristic, allowing its monitoring without interfering or disturbing its operation. The developed system includes the specification of magnetic field sensors, signal measurement and processing equipment, as well as software for analysis and monitoring. The validation of the methodology used in this system was carried out through the analysis of experimental data, presenting efficient results in the detection of electrical and mechanical faults in synchronous generators of an experimental test bench and a hydroelectric power plant. As a result, the commercial specification of this equipment was obtained and two units were implemented in a hydroelectric power plant to monitor 305 MVA synchronous generators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Journal of Microwaves, Optoelectronics and Electromagnetic Applications Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
32
审稿时长
24 weeks
期刊介绍: The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.
期刊最新文献
HIF1A contributes to the survival of aneuploid and mosaic pre-implantation embryos. Assessment of the Illumination and Communication Performance of a Visible Light System in an Indoor Scenario Software-Defined Radio Applied to a Shielding Effectiveness Measurement Numerical Analysis of Plasmonic Couplers based on Metallic Lens Detection of Eyebolt Faults Using a Random Forest Ensemble Model Based on Multiple High-Frequency Electromagnetic Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1