基于时频域全局局部建模技术的Bga焊点疲劳分析方法

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Packaging Pub Date : 2023-02-09 DOI:10.1115/1.4056886
S. Doranga, Dongji Xie, J. Lee, Andy Zhang, Xue Shi, Valeriy Khaldarov
{"title":"基于时频域全局局部建模技术的Bga焊点疲劳分析方法","authors":"S. Doranga, Dongji Xie, J. Lee, Andy Zhang, Xue Shi, Valeriy Khaldarov","doi":"10.1115/1.4056886","DOIUrl":null,"url":null,"abstract":"\n The fatigue life prediction of the electronic packages under dynamic loading conditions is an increasingly important area of research, with direct application in packaging industries. Current life prediction methodologies are, in general, developed through a finite element (FE) model that is correlated using an experimental data measured through sweep sine testing. The frequency response curve (FRF) generated by using a sweep sine testing may suffer from leakage and windowing of the signal may not work correctly, which results in the shift in the amplitude and the resonance frequencies of the package. In consequence, there will be a significant deviation between the actual and the predicted natural frequencies and the amplitude of vibration response in the given excitation range, resulting in the longer time to fail the package during the laboratory based /virtual durability testing. Thus, it is necessary to develop a suitable validation technique in time/frequency domain to address this issue. In this paper, the step sine testing procedure is utilized to validate the FE model of a test vehicle consisting of a board level BGA chip package and the resonance based fatigue testing is performed in the FE based simulation. The global-local modeling approach is utilized to model the test vehicle and the volume average von Mises stress is used to predict the life of the solder joint. Following the numerical simulations, fatigue test is carried out in the test vehicle at the first resonance frequency obtained from the step sine test. Experimental results show that there are full openings of the corner balls in a very short interval of time. The results of the life prediction from the FE model and from experiments are comparable to each other thus validating the proposed methodology.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Time Frequency Domain Based Approach for Bga Solder Joint Fatigue Analysis Using Global Local Modeling Technique\",\"authors\":\"S. Doranga, Dongji Xie, J. Lee, Andy Zhang, Xue Shi, Valeriy Khaldarov\",\"doi\":\"10.1115/1.4056886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The fatigue life prediction of the electronic packages under dynamic loading conditions is an increasingly important area of research, with direct application in packaging industries. Current life prediction methodologies are, in general, developed through a finite element (FE) model that is correlated using an experimental data measured through sweep sine testing. The frequency response curve (FRF) generated by using a sweep sine testing may suffer from leakage and windowing of the signal may not work correctly, which results in the shift in the amplitude and the resonance frequencies of the package. In consequence, there will be a significant deviation between the actual and the predicted natural frequencies and the amplitude of vibration response in the given excitation range, resulting in the longer time to fail the package during the laboratory based /virtual durability testing. Thus, it is necessary to develop a suitable validation technique in time/frequency domain to address this issue. In this paper, the step sine testing procedure is utilized to validate the FE model of a test vehicle consisting of a board level BGA chip package and the resonance based fatigue testing is performed in the FE based simulation. The global-local modeling approach is utilized to model the test vehicle and the volume average von Mises stress is used to predict the life of the solder joint. Following the numerical simulations, fatigue test is carried out in the test vehicle at the first resonance frequency obtained from the step sine test. Experimental results show that there are full openings of the corner balls in a very short interval of time. The results of the life prediction from the FE model and from experiments are comparable to each other thus validating the proposed methodology.\",\"PeriodicalId\":15663,\"journal\":{\"name\":\"Journal of Electronic Packaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Packaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056886\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056886","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

电子封装在动态载荷条件下的疲劳寿命预测是一个越来越重要的研究领域,在封装工业中有着直接的应用。一般来说,当前寿命预测方法是通过有限元(FE)模型开发的,该模型使用通过正弦扫描测试测量的实验数据进行关联。通过使用扫频正弦测试生成的频率响应曲线(FRF)可能遭受泄漏,并且信号的窗口化可能无法正确工作,这导致封装的振幅和谐振频率的偏移。因此,在给定的激励范围内,实际和预测的固有频率以及振动响应幅度之间将存在显著偏差,导致在基于实验室/虚拟耐久性测试期间,包装失效的时间更长。因此,有必要在时域/频域中开发一种合适的验证技术来解决这个问题。本文利用阶跃正弦测试程序对由板级BGA芯片封装组成的测试车的有限元模型进行了验证,并在基于有限元的模拟中进行了基于共振的疲劳测试。使用全局-局部建模方法对测试车辆进行建模,并使用体积平均von Mises应力来预测焊点的寿命。在数值模拟之后,在试验车辆中以阶跃正弦试验获得的第一共振频率进行疲劳试验。实验结果表明,在很短的时间间隔内,角球会完全张开。有限元模型和实验的寿命预测结果相互比较,从而验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Time Frequency Domain Based Approach for Bga Solder Joint Fatigue Analysis Using Global Local Modeling Technique
The fatigue life prediction of the electronic packages under dynamic loading conditions is an increasingly important area of research, with direct application in packaging industries. Current life prediction methodologies are, in general, developed through a finite element (FE) model that is correlated using an experimental data measured through sweep sine testing. The frequency response curve (FRF) generated by using a sweep sine testing may suffer from leakage and windowing of the signal may not work correctly, which results in the shift in the amplitude and the resonance frequencies of the package. In consequence, there will be a significant deviation between the actual and the predicted natural frequencies and the amplitude of vibration response in the given excitation range, resulting in the longer time to fail the package during the laboratory based /virtual durability testing. Thus, it is necessary to develop a suitable validation technique in time/frequency domain to address this issue. In this paper, the step sine testing procedure is utilized to validate the FE model of a test vehicle consisting of a board level BGA chip package and the resonance based fatigue testing is performed in the FE based simulation. The global-local modeling approach is utilized to model the test vehicle and the volume average von Mises stress is used to predict the life of the solder joint. Following the numerical simulations, fatigue test is carried out in the test vehicle at the first resonance frequency obtained from the step sine test. Experimental results show that there are full openings of the corner balls in a very short interval of time. The results of the life prediction from the FE model and from experiments are comparable to each other thus validating the proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Packaging
Journal of Electronic Packaging 工程技术-工程:电子与电气
CiteScore
4.90
自引率
6.20%
发文量
44
审稿时长
3 months
期刊介绍: The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems. Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.
期刊最新文献
Process Recipe and Functional Circuitry Performance On Aerosol Jet Printed Water-Based Silver Ink Incorporating Tensile Stress into Electromigration Life Prediction for Cu/SAC305/Cu Solder Joints Transient Liquid Phase Bond Acceleration Using Copper Nanowires Impact of Immersion Cooling On Thermomechanical Properties of Halogen-free Substrate Core Virtual Testbed for Economical and Reliability Analysis of Battery Thermal Management Control Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1