{"title":"基于注意力关系网络的手机屏幕缺陷分类","authors":"","doi":"10.1016/j.dcan.2023.01.008","DOIUrl":null,"url":null,"abstract":"<div><p>How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens. An attention-relation network for the mobile phone screen defect classification is proposed in this paper. The architecture of the attention-relation network contains two modules: a feature extract module and a feature metric module. Different from other few-shot models, an attention mechanism is applied to metric learning in our model to measure the distance between features, so as to pay attention to the correlation between features and suppress unwanted information. Besides, we combine dilated convolution and skip connection to extract more feature information for follow-up processing. We validate attention-relation network on the mobile phone screen defect dataset. The experimental results show that the classification accuracy of the attention-relation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting. It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864823000214/pdfft?md5=0820732076ef7127cda7218776b1a772&pid=1-s2.0-S2352864823000214-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Attention-relation network for mobile phone screen defect classification via a few samples\",\"authors\":\"\",\"doi\":\"10.1016/j.dcan.2023.01.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens. An attention-relation network for the mobile phone screen defect classification is proposed in this paper. The architecture of the attention-relation network contains two modules: a feature extract module and a feature metric module. Different from other few-shot models, an attention mechanism is applied to metric learning in our model to measure the distance between features, so as to pay attention to the correlation between features and suppress unwanted information. Besides, we combine dilated convolution and skip connection to extract more feature information for follow-up processing. We validate attention-relation network on the mobile phone screen defect dataset. The experimental results show that the classification accuracy of the attention-relation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting. It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864823000214/pdfft?md5=0820732076ef7127cda7218776b1a772&pid=1-s2.0-S2352864823000214-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823000214\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823000214","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Attention-relation network for mobile phone screen defect classification via a few samples
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens. An attention-relation network for the mobile phone screen defect classification is proposed in this paper. The architecture of the attention-relation network contains two modules: a feature extract module and a feature metric module. Different from other few-shot models, an attention mechanism is applied to metric learning in our model to measure the distance between features, so as to pay attention to the correlation between features and suppress unwanted information. Besides, we combine dilated convolution and skip connection to extract more feature information for follow-up processing. We validate attention-relation network on the mobile phone screen defect dataset. The experimental results show that the classification accuracy of the attention-relation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting. It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.