{"title":"粘土聚合物纳米复合材料介导的蛋白质聚集抑制:在预防蛋白质病中的可能作用。","authors":"Romana Parveen, Sher Ali, Sadaf Fatima","doi":"10.2174/0109298665274059231002071951","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The transformation of proteins from their native conformation into highly ordered fibrillar structures due to their misfolding and aggregation under particular conditions are described as beta-sheet enriched amyloid fibrils. The accumulation of these fibrils in different body parts is the major cause of several neurological and non-neurological conditions (proteinopathies).</p><p><strong>Objectives: </strong>To prevent these proteinopathies, inhibition of protein aggregation is considered a promising strategy. Therefore, in this study, we synthesized montmorillonite (MMT) based poly- orthophenylenediamine (PoPD) nanocomposites (NCs) and characterized their size and morphology due to their remarkable biological properties. Further, the effect of these nanocomposites on inhibition of fibril formation was assessed.</p><p><strong>Methods: </strong>These nanocomposites were evaluated for their anti-amyloidogenic potential on two model proteins of amyloidopathies, i.e., human lysozyme and human serum albumin (HL & HSA), by using several biophysical methods, such as Thioflavin T (ThT) and 1-anilino-8-naphthalene sulfonate (ANS) fluorescence, congo red dye binding assay (CR). Secondary structural content was evaluated by Circular dichroism (CD) spectroscopy.</p><p><strong>Results: </strong>Results demonstrated that synthesized nanocomposites significantly inhibited fibril formation in dose-dependent manner that corresponds to their ability to arrest fibrillation. It is suggested that they may adsorb proteins to protect them against aggregation when they are subjected to aggregating conditions.</p><p><strong>Conclusion: </strong>This study offers an opportunity to understand the mechanism of inhibition of fibril formation by nanocomposites, showing that they inhibit amyloid formation and amyloid diseases. Thus, the study concludes that these nanocomposites are promising candidates as therapeutic molecules for proteinopathies and are envisaged to enrich the area of personalized medicine, augmenting the human healthcare system.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clay-Polymer Nanocomposites Mediated Inhibition of Protein Aggregation: Possible Role in the Prevention of Proteinopathies.\",\"authors\":\"Romana Parveen, Sher Ali, Sadaf Fatima\",\"doi\":\"10.2174/0109298665274059231002071951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The transformation of proteins from their native conformation into highly ordered fibrillar structures due to their misfolding and aggregation under particular conditions are described as beta-sheet enriched amyloid fibrils. The accumulation of these fibrils in different body parts is the major cause of several neurological and non-neurological conditions (proteinopathies).</p><p><strong>Objectives: </strong>To prevent these proteinopathies, inhibition of protein aggregation is considered a promising strategy. Therefore, in this study, we synthesized montmorillonite (MMT) based poly- orthophenylenediamine (PoPD) nanocomposites (NCs) and characterized their size and morphology due to their remarkable biological properties. Further, the effect of these nanocomposites on inhibition of fibril formation was assessed.</p><p><strong>Methods: </strong>These nanocomposites were evaluated for their anti-amyloidogenic potential on two model proteins of amyloidopathies, i.e., human lysozyme and human serum albumin (HL & HSA), by using several biophysical methods, such as Thioflavin T (ThT) and 1-anilino-8-naphthalene sulfonate (ANS) fluorescence, congo red dye binding assay (CR). Secondary structural content was evaluated by Circular dichroism (CD) spectroscopy.</p><p><strong>Results: </strong>Results demonstrated that synthesized nanocomposites significantly inhibited fibril formation in dose-dependent manner that corresponds to their ability to arrest fibrillation. It is suggested that they may adsorb proteins to protect them against aggregation when they are subjected to aggregating conditions.</p><p><strong>Conclusion: </strong>This study offers an opportunity to understand the mechanism of inhibition of fibril formation by nanocomposites, showing that they inhibit amyloid formation and amyloid diseases. Thus, the study concludes that these nanocomposites are promising candidates as therapeutic molecules for proteinopathies and are envisaged to enrich the area of personalized medicine, augmenting the human healthcare system.</p>\",\"PeriodicalId\":20736,\"journal\":{\"name\":\"Protein and Peptide Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein and Peptide Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298665274059231002071951\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665274059231002071951","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Clay-Polymer Nanocomposites Mediated Inhibition of Protein Aggregation: Possible Role in the Prevention of Proteinopathies.
Background: The transformation of proteins from their native conformation into highly ordered fibrillar structures due to their misfolding and aggregation under particular conditions are described as beta-sheet enriched amyloid fibrils. The accumulation of these fibrils in different body parts is the major cause of several neurological and non-neurological conditions (proteinopathies).
Objectives: To prevent these proteinopathies, inhibition of protein aggregation is considered a promising strategy. Therefore, in this study, we synthesized montmorillonite (MMT) based poly- orthophenylenediamine (PoPD) nanocomposites (NCs) and characterized their size and morphology due to their remarkable biological properties. Further, the effect of these nanocomposites on inhibition of fibril formation was assessed.
Methods: These nanocomposites were evaluated for their anti-amyloidogenic potential on two model proteins of amyloidopathies, i.e., human lysozyme and human serum albumin (HL & HSA), by using several biophysical methods, such as Thioflavin T (ThT) and 1-anilino-8-naphthalene sulfonate (ANS) fluorescence, congo red dye binding assay (CR). Secondary structural content was evaluated by Circular dichroism (CD) spectroscopy.
Results: Results demonstrated that synthesized nanocomposites significantly inhibited fibril formation in dose-dependent manner that corresponds to their ability to arrest fibrillation. It is suggested that they may adsorb proteins to protect them against aggregation when they are subjected to aggregating conditions.
Conclusion: This study offers an opportunity to understand the mechanism of inhibition of fibril formation by nanocomposites, showing that they inhibit amyloid formation and amyloid diseases. Thus, the study concludes that these nanocomposites are promising candidates as therapeutic molecules for proteinopathies and are envisaged to enrich the area of personalized medicine, augmenting the human healthcare system.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis