Keshav Patil, Yiming Wang, Zhangtao Chen, Krishna Suresh, Ravi Radhakrishnan
{"title":"激活突变利用变速机制驱动人类MEK1激酶。","authors":"Keshav Patil, Yiming Wang, Zhangtao Chen, Krishna Suresh, Ravi Radhakrishnan","doi":"10.1042/BCJ20230281","DOIUrl":null,"url":null,"abstract":"<p><p>There is an unmet need to classify cancer-promoting kinase mutations in a mechanistically cognizant way. The challenge is to understand how mutations stabilize different kinase configurations to alter function, and how this influences pathogenic potential of the kinase and its responses to therapeutic inhibitors. This goal is made more challenging by the complexity of the mutational landscape of diseases, and is further compounded by the conformational plasticity of each variant where multiple conformations coexist. We focus here on the human MEK1 kinase, a vital component of the RAS/MAPK pathway in which mutations cause cancers and developmental disorders called RASopathies. We sought to explore how these mutations alter the human MEK1 kinase at atomic resolution by utilizing enhanced sampling simulations and free energy calculations. We computationally mapped the different conformational stabilities of individual mutated systems by delineating the free energy landscapes, and showed how this relates directly to experimentally quantified developmental transformation potentials of the mutations. We conclude that mutations leverage variations in the hydrogen bonding network associated with the conformational plasticity to progressively stabilize the active-like conformational state of the kinase while destabilizing the inactive-like state. The mutations alter residue-level internal molecular correlations by differentially prioritizing different conformational states, delineating the various modes of MEK1 activation reminiscent of a gear-shifting mechanism. We define the molecular basis of conversion of this kinase from its inactive to its active state, connecting structure, dynamics, and function by delineating the energy landscape and conformational plasticity, thus augmenting our understanding of MEK1 regulation.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872882/pdf/","citationCount":"0","resultStr":"{\"title\":\"Activating mutations drive human MEK1 kinase using a gear-shifting mechanism.\",\"authors\":\"Keshav Patil, Yiming Wang, Zhangtao Chen, Krishna Suresh, Ravi Radhakrishnan\",\"doi\":\"10.1042/BCJ20230281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is an unmet need to classify cancer-promoting kinase mutations in a mechanistically cognizant way. The challenge is to understand how mutations stabilize different kinase configurations to alter function, and how this influences pathogenic potential of the kinase and its responses to therapeutic inhibitors. This goal is made more challenging by the complexity of the mutational landscape of diseases, and is further compounded by the conformational plasticity of each variant where multiple conformations coexist. We focus here on the human MEK1 kinase, a vital component of the RAS/MAPK pathway in which mutations cause cancers and developmental disorders called RASopathies. We sought to explore how these mutations alter the human MEK1 kinase at atomic resolution by utilizing enhanced sampling simulations and free energy calculations. We computationally mapped the different conformational stabilities of individual mutated systems by delineating the free energy landscapes, and showed how this relates directly to experimentally quantified developmental transformation potentials of the mutations. We conclude that mutations leverage variations in the hydrogen bonding network associated with the conformational plasticity to progressively stabilize the active-like conformational state of the kinase while destabilizing the inactive-like state. The mutations alter residue-level internal molecular correlations by differentially prioritizing different conformational states, delineating the various modes of MEK1 activation reminiscent of a gear-shifting mechanism. We define the molecular basis of conversion of this kinase from its inactive to its active state, connecting structure, dynamics, and function by delineating the energy landscape and conformational plasticity, thus augmenting our understanding of MEK1 regulation.</p>\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872882/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BCJ20230281\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20230281","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Activating mutations drive human MEK1 kinase using a gear-shifting mechanism.
There is an unmet need to classify cancer-promoting kinase mutations in a mechanistically cognizant way. The challenge is to understand how mutations stabilize different kinase configurations to alter function, and how this influences pathogenic potential of the kinase and its responses to therapeutic inhibitors. This goal is made more challenging by the complexity of the mutational landscape of diseases, and is further compounded by the conformational plasticity of each variant where multiple conformations coexist. We focus here on the human MEK1 kinase, a vital component of the RAS/MAPK pathway in which mutations cause cancers and developmental disorders called RASopathies. We sought to explore how these mutations alter the human MEK1 kinase at atomic resolution by utilizing enhanced sampling simulations and free energy calculations. We computationally mapped the different conformational stabilities of individual mutated systems by delineating the free energy landscapes, and showed how this relates directly to experimentally quantified developmental transformation potentials of the mutations. We conclude that mutations leverage variations in the hydrogen bonding network associated with the conformational plasticity to progressively stabilize the active-like conformational state of the kinase while destabilizing the inactive-like state. The mutations alter residue-level internal molecular correlations by differentially prioritizing different conformational states, delineating the various modes of MEK1 activation reminiscent of a gear-shifting mechanism. We define the molecular basis of conversion of this kinase from its inactive to its active state, connecting structure, dynamics, and function by delineating the energy landscape and conformational plasticity, thus augmenting our understanding of MEK1 regulation.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling