Hongxin Wang, Han Zhang, Ryo Tamura, Bo Da, Shimaa A Abdellatef, Ikumu Watanabe, Nobuyuki Ishida, Daisuke Fujita, Nobutaka Hanagata, Tomoki Nakagawa, Jun Nakanishi
{"title":"通过原子力显微镜绘制活细胞内对环境刺激的应力图。","authors":"Hongxin Wang, Han Zhang, Ryo Tamura, Bo Da, Shimaa A Abdellatef, Ikumu Watanabe, Nobuyuki Ishida, Daisuke Fujita, Nobutaka Hanagata, Tomoki Nakagawa, Jun Nakanishi","doi":"10.1080/14686996.2023.2265434","DOIUrl":null,"url":null,"abstract":"<p><p>The response of cells to environmental stimuli, under either physiological or pathological conditions, plays a key role in determining cell fate toward either adaptive survival or controlled death. The efficiency of such a feedback mechanism is closely related to the most challenging human diseases, including cancer. Since cellular responses are implemented through physical forces exerted on intracellular components, more detailed knowledge of force distribution through modern imaging techniques is needed to ensure a mechanistic understanding of these forces. In this work, we mapped these intracellular forces at a whole-cell scale and with submicron resolution to correlate intracellular force distribution to the cytoskeletal structures. Furthermore, we visualized dynamic mechanical responses of the cells adapting to environmental modulations in situ. Such task was achieved by using an informatics-assisted atomic force microscope (AFM) indentation technique where a key step was Markov-chain Monte Carlo optimization to search for both the models used to fit indentation force-displacement curves and probe geometry descriptors. We demonstrated force dynamics within cytoskeleton, as well as nucleoskeleton in living cells which were subjected to mechanical state modulation: myosin motor inhibition, micro-compression stimulation and geometrical confinement manipulation. Our results highlight the alteration in the intracellular prestress to attenuate environmental stimuli; to involve in cellular survival against mechanical signal-initiated death during cancer growth and metastasis; and to initiate cell migration.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2265434"},"PeriodicalIF":7.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586080/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mapping stress inside living cells by atomic force microscopy in response to environmental stimuli.\",\"authors\":\"Hongxin Wang, Han Zhang, Ryo Tamura, Bo Da, Shimaa A Abdellatef, Ikumu Watanabe, Nobuyuki Ishida, Daisuke Fujita, Nobutaka Hanagata, Tomoki Nakagawa, Jun Nakanishi\",\"doi\":\"10.1080/14686996.2023.2265434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The response of cells to environmental stimuli, under either physiological or pathological conditions, plays a key role in determining cell fate toward either adaptive survival or controlled death. The efficiency of such a feedback mechanism is closely related to the most challenging human diseases, including cancer. Since cellular responses are implemented through physical forces exerted on intracellular components, more detailed knowledge of force distribution through modern imaging techniques is needed to ensure a mechanistic understanding of these forces. In this work, we mapped these intracellular forces at a whole-cell scale and with submicron resolution to correlate intracellular force distribution to the cytoskeletal structures. Furthermore, we visualized dynamic mechanical responses of the cells adapting to environmental modulations in situ. Such task was achieved by using an informatics-assisted atomic force microscope (AFM) indentation technique where a key step was Markov-chain Monte Carlo optimization to search for both the models used to fit indentation force-displacement curves and probe geometry descriptors. We demonstrated force dynamics within cytoskeleton, as well as nucleoskeleton in living cells which were subjected to mechanical state modulation: myosin motor inhibition, micro-compression stimulation and geometrical confinement manipulation. Our results highlight the alteration in the intracellular prestress to attenuate environmental stimuli; to involve in cellular survival against mechanical signal-initiated death during cancer growth and metastasis; and to initiate cell migration.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"24 1\",\"pages\":\"2265434\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2023.2265434\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2023.2265434","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mapping stress inside living cells by atomic force microscopy in response to environmental stimuli.
The response of cells to environmental stimuli, under either physiological or pathological conditions, plays a key role in determining cell fate toward either adaptive survival or controlled death. The efficiency of such a feedback mechanism is closely related to the most challenging human diseases, including cancer. Since cellular responses are implemented through physical forces exerted on intracellular components, more detailed knowledge of force distribution through modern imaging techniques is needed to ensure a mechanistic understanding of these forces. In this work, we mapped these intracellular forces at a whole-cell scale and with submicron resolution to correlate intracellular force distribution to the cytoskeletal structures. Furthermore, we visualized dynamic mechanical responses of the cells adapting to environmental modulations in situ. Such task was achieved by using an informatics-assisted atomic force microscope (AFM) indentation technique where a key step was Markov-chain Monte Carlo optimization to search for both the models used to fit indentation force-displacement curves and probe geometry descriptors. We demonstrated force dynamics within cytoskeleton, as well as nucleoskeleton in living cells which were subjected to mechanical state modulation: myosin motor inhibition, micro-compression stimulation and geometrical confinement manipulation. Our results highlight the alteration in the intracellular prestress to attenuate environmental stimuli; to involve in cellular survival against mechanical signal-initiated death during cancer growth and metastasis; and to initiate cell migration.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.