{"title":"高速混流压气机叶尖间隙流动结构的研究","authors":"Hemant Kumar, Chetan S. Mistry","doi":"10.1016/j.jppr.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip configurations namely the constant (<em>λ</em> = 0.016 and 0.019) and variable (<em>λ</em> = 0.011 (inlet)-0.019 (exit) and 0.019 (inlet)-0.022 (exit)) tip clearances were numerically analysed using available experimental data-set. The numerical investigation reveals that in contrast to the classic jet-wake pattern, two anomalous velocity profiles formed at the impeller exit which results in pressure losses in the vaneless diffuser. Near the impeller inlet, the tip leakage flow rolls up to discrete tip leakage vortex structure for each tip clearance configuration. This results in the formation of a region of momentum deficit, recirculation zone, which gets weakened as it moves downstream. The tip clearance configuration is observed to profoundly influence the extent and vorticity of the tip leakage vortex. In the splitter blade passage, the tip leakage flow and Coriolis flow interact with passage flow, resulting in the formation of two secondary passage vortices that move downstream along the pressure and suction surface of the splitter blade. The tip clearance configuration directly influences the impeller exit jet-wake pattern by modulating the secondary passage vortices trajectory and vorticity. Moreover, off-design analysis for tip clearances <em>λ</em> = 0.016 and <em>λ</em> = 0.019, depict distinctive tip leakage vortex characteristics. When operating near the stall conditions (80% of design mass flow rate), <em>λ</em> = 0.019 exhibits bubble shape tip leakage vortex breakdown occurring near the impeller inlet. This result in a substantial change in the tip leakage vortex nature; expansion of the recirculation zone and early weakening of the vorticity in the tip leakage vortex. It is observed that vortex breakdown plays a vital role in characteristics of the passage flow field structure and compressor performance near the stall conditions.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"12 3","pages":"Pages 356-379"},"PeriodicalIF":5.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding of tip clearance flow structure in high speed mixed flow compressor\",\"authors\":\"Hemant Kumar, Chetan S. Mistry\",\"doi\":\"10.1016/j.jppr.2023.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip configurations namely the constant (<em>λ</em> = 0.016 and 0.019) and variable (<em>λ</em> = 0.011 (inlet)-0.019 (exit) and 0.019 (inlet)-0.022 (exit)) tip clearances were numerically analysed using available experimental data-set. The numerical investigation reveals that in contrast to the classic jet-wake pattern, two anomalous velocity profiles formed at the impeller exit which results in pressure losses in the vaneless diffuser. Near the impeller inlet, the tip leakage flow rolls up to discrete tip leakage vortex structure for each tip clearance configuration. This results in the formation of a region of momentum deficit, recirculation zone, which gets weakened as it moves downstream. The tip clearance configuration is observed to profoundly influence the extent and vorticity of the tip leakage vortex. In the splitter blade passage, the tip leakage flow and Coriolis flow interact with passage flow, resulting in the formation of two secondary passage vortices that move downstream along the pressure and suction surface of the splitter blade. The tip clearance configuration directly influences the impeller exit jet-wake pattern by modulating the secondary passage vortices trajectory and vorticity. Moreover, off-design analysis for tip clearances <em>λ</em> = 0.016 and <em>λ</em> = 0.019, depict distinctive tip leakage vortex characteristics. When operating near the stall conditions (80% of design mass flow rate), <em>λ</em> = 0.019 exhibits bubble shape tip leakage vortex breakdown occurring near the impeller inlet. This result in a substantial change in the tip leakage vortex nature; expansion of the recirculation zone and early weakening of the vorticity in the tip leakage vortex. It is observed that vortex breakdown plays a vital role in characteristics of the passage flow field structure and compressor performance near the stall conditions.</p></div>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"12 3\",\"pages\":\"Pages 356-379\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212540X23000494\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X23000494","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Understanding of tip clearance flow structure in high speed mixed flow compressor
This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip configurations namely the constant (λ = 0.016 and 0.019) and variable (λ = 0.011 (inlet)-0.019 (exit) and 0.019 (inlet)-0.022 (exit)) tip clearances were numerically analysed using available experimental data-set. The numerical investigation reveals that in contrast to the classic jet-wake pattern, two anomalous velocity profiles formed at the impeller exit which results in pressure losses in the vaneless diffuser. Near the impeller inlet, the tip leakage flow rolls up to discrete tip leakage vortex structure for each tip clearance configuration. This results in the formation of a region of momentum deficit, recirculation zone, which gets weakened as it moves downstream. The tip clearance configuration is observed to profoundly influence the extent and vorticity of the tip leakage vortex. In the splitter blade passage, the tip leakage flow and Coriolis flow interact with passage flow, resulting in the formation of two secondary passage vortices that move downstream along the pressure and suction surface of the splitter blade. The tip clearance configuration directly influences the impeller exit jet-wake pattern by modulating the secondary passage vortices trajectory and vorticity. Moreover, off-design analysis for tip clearances λ = 0.016 and λ = 0.019, depict distinctive tip leakage vortex characteristics. When operating near the stall conditions (80% of design mass flow rate), λ = 0.019 exhibits bubble shape tip leakage vortex breakdown occurring near the impeller inlet. This result in a substantial change in the tip leakage vortex nature; expansion of the recirculation zone and early weakening of the vorticity in the tip leakage vortex. It is observed that vortex breakdown plays a vital role in characteristics of the passage flow field structure and compressor performance near the stall conditions.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.