从统一的形状和照明的多视图SVBRDF捕获

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2023-09-01 DOI:10.1016/j.visinf.2023.06.006
Liang Yuan, Issei Fujishiro
{"title":"从统一的形状和照明的多视图SVBRDF捕获","authors":"Liang Yuan,&nbsp;Issei Fujishiro","doi":"10.1016/j.visinf.2023.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a stable method for reconstructing spatially varying appearances (SVBRDFs) from multiview images captured under casual lighting conditions. Unlike flat surface capture methods, ours can be applied to surfaces with complex silhouettes. The proposed method takes multiview images as inputs and outputs a unified SVBRDF estimation. We generated a large-scale dataset containing the multiview images, SVBRDFs, and lighting appearance of vast synthetic objects to train a two-stream hierarchical U-Net for SVBRDF estimation that is integrated into a differentiable rendering network for surface appearance reconstruction. In comparison with state-of-the-art approaches, our method produces SVBRDFs with lower biases for more casually captured images.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"7 3","pages":"Pages 11-21"},"PeriodicalIF":3.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiview SVBRDF capture from unified shape and illumination\",\"authors\":\"Liang Yuan,&nbsp;Issei Fujishiro\",\"doi\":\"10.1016/j.visinf.2023.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a stable method for reconstructing spatially varying appearances (SVBRDFs) from multiview images captured under casual lighting conditions. Unlike flat surface capture methods, ours can be applied to surfaces with complex silhouettes. The proposed method takes multiview images as inputs and outputs a unified SVBRDF estimation. We generated a large-scale dataset containing the multiview images, SVBRDFs, and lighting appearance of vast synthetic objects to train a two-stream hierarchical U-Net for SVBRDF estimation that is integrated into a differentiable rendering network for surface appearance reconstruction. In comparison with state-of-the-art approaches, our method produces SVBRDFs with lower biases for more casually captured images.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"7 3\",\"pages\":\"Pages 11-21\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X23000311\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X23000311","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种从偶然照明条件下拍摄的多视点图像中重建空间变化外观(SVBRDF)的稳定方法。与平面捕捉方法不同,我们的方法可以应用于具有复杂轮廓的表面。该方法以多视点图像为输入,输出统一的SVBRDF估计。我们生成了一个包含多视点图像、SVBRDF和大型合成对象的照明外观的大规模数据集,以训练用于SVBRDF估计的双流层次U-Net,该U-Net集成到用于表面外观重建的可微分渲染网络中。与最先进的方法相比,我们的方法产生的SVBRDF对更随意捕捉的图像具有更低的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiview SVBRDF capture from unified shape and illumination

This paper proposes a stable method for reconstructing spatially varying appearances (SVBRDFs) from multiview images captured under casual lighting conditions. Unlike flat surface capture methods, ours can be applied to surfaces with complex silhouettes. The proposed method takes multiview images as inputs and outputs a unified SVBRDF estimation. We generated a large-scale dataset containing the multiview images, SVBRDFs, and lighting appearance of vast synthetic objects to train a two-stream hierarchical U-Net for SVBRDF estimation that is integrated into a differentiable rendering network for surface appearance reconstruction. In comparison with state-of-the-art approaches, our method produces SVBRDFs with lower biases for more casually captured images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1