NetPrune:网络修剪的火花线可视化

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2023-06-01 DOI:10.1016/j.visinf.2023.04.001
Luc-Etienne Pommé, Romain Bourqui, Romain Giot, Jason Vallet, David Auber
{"title":"NetPrune:网络修剪的火花线可视化","authors":"Luc-Etienne Pommé,&nbsp;Romain Bourqui,&nbsp;Romain Giot,&nbsp;Jason Vallet,&nbsp;David Auber","doi":"10.1016/j.visinf.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Current deep learning approaches are cutting-edge methods for solving classification tasks. Arising transfer learning techniques allows applying large generic model to simple tasks whereas simpler models could be used. Large models raise the major problem of their memory consumption and processor usage and lead to a prohibitive ecological footprint. In that paper, we present a novel visual analytics approach to interactively prune those networks and thus limit that issue. Our technique leverages a novel sparkline matrix visualization technique as well as a novel local metric which evaluates the discriminatory power of a filter to guide the pruning process and make it interpretable. We assess the well- founded of our approach through two realistic case studies and a user study. For both of them, the interactive refinement of the model led to a significantly smaller model having similar prediction accuracy than the original one.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"7 2","pages":"Pages 85-99"},"PeriodicalIF":3.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NetPrune: A sparklines visualization for network pruning\",\"authors\":\"Luc-Etienne Pommé,&nbsp;Romain Bourqui,&nbsp;Romain Giot,&nbsp;Jason Vallet,&nbsp;David Auber\",\"doi\":\"10.1016/j.visinf.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Current deep learning approaches are cutting-edge methods for solving classification tasks. Arising transfer learning techniques allows applying large generic model to simple tasks whereas simpler models could be used. Large models raise the major problem of their memory consumption and processor usage and lead to a prohibitive ecological footprint. In that paper, we present a novel visual analytics approach to interactively prune those networks and thus limit that issue. Our technique leverages a novel sparkline matrix visualization technique as well as a novel local metric which evaluates the discriminatory power of a filter to guide the pruning process and make it interpretable. We assess the well- founded of our approach through two realistic case studies and a user study. For both of them, the interactive refinement of the model led to a significantly smaller model having similar prediction accuracy than the original one.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"7 2\",\"pages\":\"Pages 85-99\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X23000141\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X23000141","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

当前的深度学习方法是解决分类任务的前沿方法。出现的迁移学习技术允许将大型通用模型应用于简单的任务,而可以使用更简单的模型。大型模型带来了内存消耗和处理器使用的主要问题,并导致了令人望而却步的生态足迹。在这篇论文中,我们提出了一种新的视觉分析方法来交互式地修剪这些网络,从而限制这个问题。我们的技术利用了一种新的sparkline矩阵可视化技术以及一种评估滤波器判别能力的新的局部度量来指导修剪过程并使其具有可解释性。我们通过两个现实的案例研究和一个用户研究来评估我们的方法的充分性。对于他们两人来说,模型的交互式细化导致了一个明显更小的模型,其预测精度与原始模型相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NetPrune: A sparklines visualization for network pruning

Current deep learning approaches are cutting-edge methods for solving classification tasks. Arising transfer learning techniques allows applying large generic model to simple tasks whereas simpler models could be used. Large models raise the major problem of their memory consumption and processor usage and lead to a prohibitive ecological footprint. In that paper, we present a novel visual analytics approach to interactively prune those networks and thus limit that issue. Our technique leverages a novel sparkline matrix visualization technique as well as a novel local metric which evaluates the discriminatory power of a filter to guide the pruning process and make it interpretable. We assess the well- founded of our approach through two realistic case studies and a user study. For both of them, the interactive refinement of the model led to a significantly smaller model having similar prediction accuracy than the original one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1