为实用的硫化物基全固态电池定制高负载阴极电极的电子导电性

Huaqing Shen , Shenghao Jing , Siliang Liu , Yuting Huang , Fangbo He , Yang Liu , Zhi Zhuang , Zongliang Zhang , Fangyang Liu
{"title":"为实用的硫化物基全固态电池定制高负载阴极电极的电子导电性","authors":"Huaqing Shen ,&nbsp;Shenghao Jing ,&nbsp;Siliang Liu ,&nbsp;Yuting Huang ,&nbsp;Fangbo He ,&nbsp;Yang Liu ,&nbsp;Zhi Zhuang ,&nbsp;Zongliang Zhang ,&nbsp;Fangyang Liu","doi":"10.1016/j.apmate.2023.100136","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfide-based all-solid-state batteries (ASSBs) exhibit unparalleled application value due to the high ionic conductivity and good processability of sulfide solid electrolytes (SSEs). Carbon-based conductive agents (CAs) are often used in the construction of electronic conductive networks to achieve rapid electron transfer. However, CAs accelerate the formation of decomposition products of SSEs, and their effects on sulfide-based ASSBs are not fully understood. Herein, the effect of CAs (super P, vaper-grown carbon fibers, and carbon nanotubes) on the performance of sulfide-based ASSBs is investigated under different cathode active materials mass loading (8 and 25 ​mg·cm<sup>−2</sup>). The results show that under low mass loading, the side reaction between the CAs and the SSEs deteriorates the performance of the cell, while the charge transfer promotion caused by the addition of CAs is only manifested under high mass loading. Furthermore, the gradient design strategy (enrichment of CAs near the current collector side and depletion of CAs near the electrolyte side) is applied to maximize the benefits of CAs in electron transport and reduce the adverse effects of CAs. The charge carrier transport barrier inside the high mass loading electrode is significantly reduced through the regulation of electronic conductivity. Consequently, the optimized electrode achieves a high areal capacity of 5.6 ​mAh·cm<sup>−2</sup> at high current density (1.25 ​mA·cm<sup>−2</sup>, 0.2 ​C) at 25 °C with a capacity retention of 87.85% after 100 cycles. This work provides a promising way for the design of high-mass loading electrodes with practical application value.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"2 4","pages":"Article 100136"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tailoring the electronic conductivity of high-loading cathode electrodes for practical sulfide-based all-solid-state batteries\",\"authors\":\"Huaqing Shen ,&nbsp;Shenghao Jing ,&nbsp;Siliang Liu ,&nbsp;Yuting Huang ,&nbsp;Fangbo He ,&nbsp;Yang Liu ,&nbsp;Zhi Zhuang ,&nbsp;Zongliang Zhang ,&nbsp;Fangyang Liu\",\"doi\":\"10.1016/j.apmate.2023.100136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sulfide-based all-solid-state batteries (ASSBs) exhibit unparalleled application value due to the high ionic conductivity and good processability of sulfide solid electrolytes (SSEs). Carbon-based conductive agents (CAs) are often used in the construction of electronic conductive networks to achieve rapid electron transfer. However, CAs accelerate the formation of decomposition products of SSEs, and their effects on sulfide-based ASSBs are not fully understood. Herein, the effect of CAs (super P, vaper-grown carbon fibers, and carbon nanotubes) on the performance of sulfide-based ASSBs is investigated under different cathode active materials mass loading (8 and 25 ​mg·cm<sup>−2</sup>). The results show that under low mass loading, the side reaction between the CAs and the SSEs deteriorates the performance of the cell, while the charge transfer promotion caused by the addition of CAs is only manifested under high mass loading. Furthermore, the gradient design strategy (enrichment of CAs near the current collector side and depletion of CAs near the electrolyte side) is applied to maximize the benefits of CAs in electron transport and reduce the adverse effects of CAs. The charge carrier transport barrier inside the high mass loading electrode is significantly reduced through the regulation of electronic conductivity. Consequently, the optimized electrode achieves a high areal capacity of 5.6 ​mAh·cm<sup>−2</sup> at high current density (1.25 ​mA·cm<sup>−2</sup>, 0.2 ​C) at 25 °C with a capacity retention of 87.85% after 100 cycles. This work provides a promising way for the design of high-mass loading electrodes with practical application value.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"2 4\",\"pages\":\"Article 100136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X23000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于硫化物的全固态电池(ASSBs)由于硫化物固体电解质(SSEs)的高离子导电性和良好的可加工性而显示出无与伦比的应用价值。碳基导电剂(CA)通常用于构建电子导电网络,以实现快速电子转移。然而,CAs加速了SSE分解产物的形成,并且它们对硫化物基ASSB的影响尚不完全清楚。本文研究了在不同阴极活性材料质量负载(8和25)下,CA(超P、vaper生长的碳纤维和碳纳米管)对硫化物基ASSBs性能的影响​mg·cm−2)。结果表明,在低质量负载下,CA和SSE之间的副反应会降低电池的性能,而添加CA引起的电荷转移促进仅在高质量负载下表现出来。此外,应用梯度设计策略(在集电器侧附近富集CA,在电解质侧附近耗尽CA),以最大限度地提高CA在电子传输中的优势,并减少CA的不利影响。高质量负载电极内部的电荷载流子传输势垒通过调节电子电导率而显著降低。因此,优化的电极实现了5.6的高面积容量​mAh·cm−2,高电流密度(1.25​mA·cm−2,0.2​C) 在25°C下,100次循环后容量保持率为87.85%。这项工作为设计具有实际应用价值的高质量负载电极提供了一条很有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring the electronic conductivity of high-loading cathode electrodes for practical sulfide-based all-solid-state batteries

Sulfide-based all-solid-state batteries (ASSBs) exhibit unparalleled application value due to the high ionic conductivity and good processability of sulfide solid electrolytes (SSEs). Carbon-based conductive agents (CAs) are often used in the construction of electronic conductive networks to achieve rapid electron transfer. However, CAs accelerate the formation of decomposition products of SSEs, and their effects on sulfide-based ASSBs are not fully understood. Herein, the effect of CAs (super P, vaper-grown carbon fibers, and carbon nanotubes) on the performance of sulfide-based ASSBs is investigated under different cathode active materials mass loading (8 and 25 ​mg·cm−2). The results show that under low mass loading, the side reaction between the CAs and the SSEs deteriorates the performance of the cell, while the charge transfer promotion caused by the addition of CAs is only manifested under high mass loading. Furthermore, the gradient design strategy (enrichment of CAs near the current collector side and depletion of CAs near the electrolyte side) is applied to maximize the benefits of CAs in electron transport and reduce the adverse effects of CAs. The charge carrier transport barrier inside the high mass loading electrode is significantly reduced through the regulation of electronic conductivity. Consequently, the optimized electrode achieves a high areal capacity of 5.6 ​mAh·cm−2 at high current density (1.25 ​mA·cm−2, 0.2 ​C) at 25 °C with a capacity retention of 87.85% after 100 cycles. This work provides a promising way for the design of high-mass loading electrodes with practical application value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Multicolor chiral perovskite nanowire films with strong and tailorable circularly polarized luminescence Frustrated lewis pairs regulated solid polymer electrolyte enables ultralong cycles of lithium metal batteries Coupling Enteromorpha prolifera-derived N-doped biochar with Cu-Mo2C clusters for selective CO2 hydrogenation to CO Enhanced photoelectric and thermoelectric coupling factor in BiMn2O5 ferroelectric film Electrolyte-independent and sustained inorganic-rich layer with functional anion aggregates for stable lithium metal electrode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1