稳定锌金属电池中锌金属-硫化锡极化界面的构建

Yingzhu Hu , Chunyan Fu , Simin Chai , Qiong He , Yijiang Wang , Mingyang Feng , Yifang Zhang , Anqiang Pan
{"title":"稳定锌金属电池中锌金属-硫化锡极化界面的构建","authors":"Yingzhu Hu ,&nbsp;Chunyan Fu ,&nbsp;Simin Chai ,&nbsp;Qiong He ,&nbsp;Yijiang Wang ,&nbsp;Mingyang Feng ,&nbsp;Yifang Zhang ,&nbsp;Anqiang Pan","doi":"10.1016/j.apmate.2022.100093","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous Zn metal batteries have become competitive electrochemical energy storage systems owing to their material abundance, low cost, high capacity, and nontoxicity. Nevertheless, the notorious Zn dendrites and poor anode reversibility caused by the insulating by-products and “dead Zn” are still formidable challenges for their practical application. Herein, an SnS-based layer coated on the Zn anode is reported to tackle these problems. The semiconducting SnS with a higher work function can drive the electrons from the Zn anode, which constructs a polarized interface between the SnS layer and Zn. The semiconducting importance of the coating layer is verified through theoretical simulations, which can migrate the polarization layer from the electrode surface to a well-protected spot beneath the coating layer. This polarization interface is effective in homogenizing the Zn<sup>2+</sup> flux and repelling the anions from electrochemical corrosion. Compared with the bare Zn, the SnS-coated Zn anode exhibits a notable 14.7-fold enhancement in plating/stripping lifetime (over 3000 ​h), high reversibility (with CE of 99.74%), and superior stability in full cells when paired with vanadium- and manganese-based cathodes.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Construction of zinc metal-Tin sulfide polarized interface for stable Zn metal batteries\",\"authors\":\"Yingzhu Hu ,&nbsp;Chunyan Fu ,&nbsp;Simin Chai ,&nbsp;Qiong He ,&nbsp;Yijiang Wang ,&nbsp;Mingyang Feng ,&nbsp;Yifang Zhang ,&nbsp;Anqiang Pan\",\"doi\":\"10.1016/j.apmate.2022.100093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous Zn metal batteries have become competitive electrochemical energy storage systems owing to their material abundance, low cost, high capacity, and nontoxicity. Nevertheless, the notorious Zn dendrites and poor anode reversibility caused by the insulating by-products and “dead Zn” are still formidable challenges for their practical application. Herein, an SnS-based layer coated on the Zn anode is reported to tackle these problems. The semiconducting SnS with a higher work function can drive the electrons from the Zn anode, which constructs a polarized interface between the SnS layer and Zn. The semiconducting importance of the coating layer is verified through theoretical simulations, which can migrate the polarization layer from the electrode surface to a well-protected spot beneath the coating layer. This polarization interface is effective in homogenizing the Zn<sup>2+</sup> flux and repelling the anions from electrochemical corrosion. Compared with the bare Zn, the SnS-coated Zn anode exhibits a notable 14.7-fold enhancement in plating/stripping lifetime (over 3000 ​h), high reversibility (with CE of 99.74%), and superior stability in full cells when paired with vanadium- and manganese-based cathodes.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X22000768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X22000768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

水性锌金属电池由于其材料丰富、成本低、容量大和无毒性,已成为具有竞争力的电化学储能系统。然而,由绝缘副产物和“死锌”引起的臭名昭著的锌枝晶和较差的阳极可逆性仍然是其实际应用的巨大挑战。本文报道了一种涂覆在Zn阳极上的SnS基层来解决这些问题。具有较高功函数的半导体SnS可以驱动来自Zn阳极的电子,这在SnS层和Zn之间构建了极化界面。通过理论模拟验证了涂层的半导体重要性,该模拟可以将极化层从电极表面迁移到涂层下方受良好保护的点。这种极化界面在使Zn2+通量均匀化和排斥阴离子免受电化学腐蚀方面是有效的。与裸锌相比,SnS涂层的锌阳极在电镀/剥离寿命方面显著提高了14.7倍(超过3000​h) ,高可逆性(CE为99.74%),与钒基和锰基阴极配对时在全电池中具有优异的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of zinc metal-Tin sulfide polarized interface for stable Zn metal batteries

Aqueous Zn metal batteries have become competitive electrochemical energy storage systems owing to their material abundance, low cost, high capacity, and nontoxicity. Nevertheless, the notorious Zn dendrites and poor anode reversibility caused by the insulating by-products and “dead Zn” are still formidable challenges for their practical application. Herein, an SnS-based layer coated on the Zn anode is reported to tackle these problems. The semiconducting SnS with a higher work function can drive the electrons from the Zn anode, which constructs a polarized interface between the SnS layer and Zn. The semiconducting importance of the coating layer is verified through theoretical simulations, which can migrate the polarization layer from the electrode surface to a well-protected spot beneath the coating layer. This polarization interface is effective in homogenizing the Zn2+ flux and repelling the anions from electrochemical corrosion. Compared with the bare Zn, the SnS-coated Zn anode exhibits a notable 14.7-fold enhancement in plating/stripping lifetime (over 3000 ​h), high reversibility (with CE of 99.74%), and superior stability in full cells when paired with vanadium- and manganese-based cathodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1