采用选择性激光熔化法制备了Mg-9Al-1Zn-0.5Mn合金的超高强度和延展性

Cheng Chang , Hanlin Liao , Lin Yi , Yilong Dai , Sophie C. Cox , Ming Yan , Min Liu , Xingchen Yan
{"title":"采用选择性激光熔化法制备了Mg-9Al-1Zn-0.5Mn合金的超高强度和延展性","authors":"Cheng Chang ,&nbsp;Hanlin Liao ,&nbsp;Lin Yi ,&nbsp;Yilong Dai ,&nbsp;Sophie C. Cox ,&nbsp;Ming Yan ,&nbsp;Min Liu ,&nbsp;Xingchen Yan","doi":"10.1016/j.apmate.2022.100097","DOIUrl":null,"url":null,"abstract":"<div><p>Fabrication of the Mg–9Al–1Zn–0.5Mn alloy with excellent mechanical performance using selective laser melting (SLM) technology is quite difficult owing to the poor weldability and low boiling point. To address these challenges and seek the optimal processing parameters, response surface methodology was systematically utilized to determine the appropriate SLM parameter combinations. Mg–9Al–1Zn–0.5Mn sample with high relative density (99.5 ​± ​0.28%) and favorable mechanical properties (microhardness ​= ​95.6 ​± ​5.28 HV<sub>0.1</sub>, UTS ​= ​370.2 ​MPa, and A<sub>t</sub> ​= ​10.4%) was achieved using optimized SLM parameters (<em>P</em> ​= ​120 ​W, <em>v</em> ​= ​500 ​mm/s, and <em>h</em> ​= ​45 ​μm). Sample ​is dominated by a random texture and microstructure is primarily constituted by quantities of fine equiaxed grains (α-Mg phase), a small amount of β-Al<sub>12</sub>Mg<sub>17</sub> structures (4.96 ​vol%, including spherical: <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>2</mn><mover><mn>1</mn><mo>¯</mo></mover><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow><mi>α</mi></msub></mrow></math></span>// <span><math><mrow><msub><mrow><mo>[</mo><mn>111</mn><mo>]</mo></mrow><mi>β</mi></msub></mrow></math></span> and long lath-like: <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>2</mn><mover><mn>1</mn><mo>¯</mo></mover><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow><mi>α</mi></msub></mrow></math></span>// <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>1</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>5</mn></mrow><mo>]</mo></mrow><mi>β</mi></msub></mrow></math></span> or <span><math><mrow><msub><mrow><mo>[</mo><mrow><mover><mn>1</mn><mo>¯</mo></mover><mn>011</mn></mrow><mo>]</mo></mrow><mi>α</mi></msub></mrow></math></span>// <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>3</mn><mover><mn>2</mn><mo>¯</mo></mover><mover><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow><mi>β</mi></msub></mrow></math></span>), and some short rod-shaped Al<sub>8</sub>Mn<sub>5</sub> nanoparticles. Benefiting from grain boundary strengthening, solid solution strengthening, and precipitation hardening of various nanoparticles (β-Al<sub>12</sub>Mg<sub>17</sub> and Al<sub>8</sub>Mn<sub>5</sub>), high-performance Mg–9Al–1Zn–0.5Mn alloy biomedical implants can be fabricated. Precipitation hardening dominates the strengthening mechanism of the SLM Mg–9Al–1Zn–0.5Mn alloy.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Achieving ultra-high strength and ductility in Mg–9Al–1Zn–0.5Mn alloy via selective laser melting\",\"authors\":\"Cheng Chang ,&nbsp;Hanlin Liao ,&nbsp;Lin Yi ,&nbsp;Yilong Dai ,&nbsp;Sophie C. Cox ,&nbsp;Ming Yan ,&nbsp;Min Liu ,&nbsp;Xingchen Yan\",\"doi\":\"10.1016/j.apmate.2022.100097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fabrication of the Mg–9Al–1Zn–0.5Mn alloy with excellent mechanical performance using selective laser melting (SLM) technology is quite difficult owing to the poor weldability and low boiling point. To address these challenges and seek the optimal processing parameters, response surface methodology was systematically utilized to determine the appropriate SLM parameter combinations. Mg–9Al–1Zn–0.5Mn sample with high relative density (99.5 ​± ​0.28%) and favorable mechanical properties (microhardness ​= ​95.6 ​± ​5.28 HV<sub>0.1</sub>, UTS ​= ​370.2 ​MPa, and A<sub>t</sub> ​= ​10.4%) was achieved using optimized SLM parameters (<em>P</em> ​= ​120 ​W, <em>v</em> ​= ​500 ​mm/s, and <em>h</em> ​= ​45 ​μm). Sample ​is dominated by a random texture and microstructure is primarily constituted by quantities of fine equiaxed grains (α-Mg phase), a small amount of β-Al<sub>12</sub>Mg<sub>17</sub> structures (4.96 ​vol%, including spherical: <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>2</mn><mover><mn>1</mn><mo>¯</mo></mover><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow><mi>α</mi></msub></mrow></math></span>// <span><math><mrow><msub><mrow><mo>[</mo><mn>111</mn><mo>]</mo></mrow><mi>β</mi></msub></mrow></math></span> and long lath-like: <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>2</mn><mover><mn>1</mn><mo>¯</mo></mover><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow><mi>α</mi></msub></mrow></math></span>// <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>1</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>5</mn></mrow><mo>]</mo></mrow><mi>β</mi></msub></mrow></math></span> or <span><math><mrow><msub><mrow><mo>[</mo><mrow><mover><mn>1</mn><mo>¯</mo></mover><mn>011</mn></mrow><mo>]</mo></mrow><mi>α</mi></msub></mrow></math></span>// <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>3</mn><mover><mn>2</mn><mo>¯</mo></mover><mover><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow><mi>β</mi></msub></mrow></math></span>), and some short rod-shaped Al<sub>8</sub>Mn<sub>5</sub> nanoparticles. Benefiting from grain boundary strengthening, solid solution strengthening, and precipitation hardening of various nanoparticles (β-Al<sub>12</sub>Mg<sub>17</sub> and Al<sub>8</sub>Mn<sub>5</sub>), high-performance Mg–9Al–1Zn–0.5Mn alloy biomedical implants can be fabricated. Precipitation hardening dominates the strengthening mechanism of the SLM Mg–9Al–1Zn–0.5Mn alloy.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X2200080X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X2200080X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

由于可焊性差和沸点低,使用选择性激光熔化(SLM)技术制备具有优异机械性能的Mg–9Al–1Zn–0.5Mn合金非常困难。为了应对这些挑战并寻求最佳加工参数,系统地利用响应面方法来确定适当的SLM参数组合。Mg–9Al–1Zn–0.5Mn样品,具有高相对密度(99.5​±​0.28%)和良好的机械性能(显微硬度​=​95.6​±​5.28 HV0.1,UTS​=​370.2​MPa和At​=​10.4%)​=​120​W、 v​=​500​mm/s和h​=​45​μm)。样品​以随机织构为主,微观结构主要由大量细小的等轴晶粒(α-Mg相)和少量的β-Al12Mg17结构(4.96​体积%,包括球形:[21’1’0]α//[111]β和长板条状:[21‘1’0]α//[11’5]β或[1’011]α//[32’1’]β),以及一些短棒状Al8Mn5纳米颗粒。得益于各种纳米颗粒(β-Al12Mg17和Al8Mn5)的晶界强化、固溶体强化和沉淀硬化,可以制备高性能的Mg–9Al–1Zn–0.5Mn合金生物医学植入物。沉淀硬化主导了SLM Mg–9Al–1Zn–0.5Mn合金的强化机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving ultra-high strength and ductility in Mg–9Al–1Zn–0.5Mn alloy via selective laser melting

Fabrication of the Mg–9Al–1Zn–0.5Mn alloy with excellent mechanical performance using selective laser melting (SLM) technology is quite difficult owing to the poor weldability and low boiling point. To address these challenges and seek the optimal processing parameters, response surface methodology was systematically utilized to determine the appropriate SLM parameter combinations. Mg–9Al–1Zn–0.5Mn sample with high relative density (99.5 ​± ​0.28%) and favorable mechanical properties (microhardness ​= ​95.6 ​± ​5.28 HV0.1, UTS ​= ​370.2 ​MPa, and At ​= ​10.4%) was achieved using optimized SLM parameters (P ​= ​120 ​W, v ​= ​500 ​mm/s, and h ​= ​45 ​μm). Sample ​is dominated by a random texture and microstructure is primarily constituted by quantities of fine equiaxed grains (α-Mg phase), a small amount of β-Al12Mg17 structures (4.96 ​vol%, including spherical: [21¯1¯0]α// [111]β and long lath-like: [21¯1¯0]α// [11¯5]β or [1¯011]α// [32¯1¯]β), and some short rod-shaped Al8Mn5 nanoparticles. Benefiting from grain boundary strengthening, solid solution strengthening, and precipitation hardening of various nanoparticles (β-Al12Mg17 and Al8Mn5), high-performance Mg–9Al–1Zn–0.5Mn alloy biomedical implants can be fabricated. Precipitation hardening dominates the strengthening mechanism of the SLM Mg–9Al–1Zn–0.5Mn alloy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1