Zheng Wang , Jiaxun Wang , Jiacheng Liu , Yating Zhang , Jingyi Zhang , Ruimeng Yang , Zhaosong Meng , Xiaoqun Gong , Lei Sui
{"title":"铂纳米颗粒通过清除活性氧促进人牙滤泡干细胞成骨分化","authors":"Zheng Wang , Jiaxun Wang , Jiacheng Liu , Yating Zhang , Jingyi Zhang , Ruimeng Yang , Zhaosong Meng , Xiaoqun Gong , Lei Sui","doi":"10.1016/j.smaim.2023.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>The over-accumulation of ROS during prolonged <em>in vitro</em> expansion could negatively affect the properties of stem cells. This leads to a reduced capacity for self-renewal and a lower potential for multiple differentiation, ultimately hindering their applicability in regenerative medicine. Herein, we fabricated platinum nanoparticles (PtNPs) as a potential biocompatible antioxidant to efficiently eliminate the ROS accumulation in human dental follicle stem cells (hDFSCs) during <em>in vitro</em> expansion, thereby enhancing hDFSCs proliferation and osteogenic differentiation. Transcriptome analysis revealed that PI3K/AKT signaling pathway was activated in PtNPs-treated hDFSCs. Transplantation of PtNPs-treated rDFSCs could facilitate new bone formation compared to transplantation of PBS or un-treated rDFSCs, leading to efficient regeneration of bone tissue in rat mandibular bone defect models. In conclusion, PtNPs offered a novel antioxidative strategy to improve stem cell properties and stem-cells-based alveolar bone regeneration.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 621-638"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Platinum nanoparticles enhance osteogenic differentiation of human dental follicle stem cells via scavenging ROS\",\"authors\":\"Zheng Wang , Jiaxun Wang , Jiacheng Liu , Yating Zhang , Jingyi Zhang , Ruimeng Yang , Zhaosong Meng , Xiaoqun Gong , Lei Sui\",\"doi\":\"10.1016/j.smaim.2023.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The over-accumulation of ROS during prolonged <em>in vitro</em> expansion could negatively affect the properties of stem cells. This leads to a reduced capacity for self-renewal and a lower potential for multiple differentiation, ultimately hindering their applicability in regenerative medicine. Herein, we fabricated platinum nanoparticles (PtNPs) as a potential biocompatible antioxidant to efficiently eliminate the ROS accumulation in human dental follicle stem cells (hDFSCs) during <em>in vitro</em> expansion, thereby enhancing hDFSCs proliferation and osteogenic differentiation. Transcriptome analysis revealed that PI3K/AKT signaling pathway was activated in PtNPs-treated hDFSCs. Transplantation of PtNPs-treated rDFSCs could facilitate new bone formation compared to transplantation of PBS or un-treated rDFSCs, leading to efficient regeneration of bone tissue in rat mandibular bone defect models. In conclusion, PtNPs offered a novel antioxidative strategy to improve stem cell properties and stem-cells-based alveolar bone regeneration.</p></div>\",\"PeriodicalId\":22019,\"journal\":{\"name\":\"Smart Materials in Medicine\",\"volume\":\"4 \",\"pages\":\"Pages 621-638\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590183423000212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183423000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Platinum nanoparticles enhance osteogenic differentiation of human dental follicle stem cells via scavenging ROS
The over-accumulation of ROS during prolonged in vitro expansion could negatively affect the properties of stem cells. This leads to a reduced capacity for self-renewal and a lower potential for multiple differentiation, ultimately hindering their applicability in regenerative medicine. Herein, we fabricated platinum nanoparticles (PtNPs) as a potential biocompatible antioxidant to efficiently eliminate the ROS accumulation in human dental follicle stem cells (hDFSCs) during in vitro expansion, thereby enhancing hDFSCs proliferation and osteogenic differentiation. Transcriptome analysis revealed that PI3K/AKT signaling pathway was activated in PtNPs-treated hDFSCs. Transplantation of PtNPs-treated rDFSCs could facilitate new bone formation compared to transplantation of PBS or un-treated rDFSCs, leading to efficient regeneration of bone tissue in rat mandibular bone defect models. In conclusion, PtNPs offered a novel antioxidative strategy to improve stem cell properties and stem-cells-based alveolar bone regeneration.