具有锚定单原子铁位的空心n掺杂碳球用于高效电催化氧还原

Q3 Energy 燃料化学学报 Pub Date : 2023-05-01 DOI:10.1016/S1872-5813(22)60067-7
Min-min WANG , Chao FENG , Yun-qi LIU , Yuan PAN
{"title":"具有锚定单原子铁位的空心n掺杂碳球用于高效电催化氧还原","authors":"Min-min WANG ,&nbsp;Chao FENG ,&nbsp;Yun-qi LIU ,&nbsp;Yuan PAN","doi":"10.1016/S1872-5813(22)60067-7","DOIUrl":null,"url":null,"abstract":"<div><p>We anchored atomically dispersed Fe-N<sub>4</sub> sites on hollow N-doped carbon spheres (Fe SAs/HNCSs-800) for electrocatalytic ORR; the obtained material exhibited electrocatalytic activity and stability comparable to that of commercial Pt/C, with an onset potential of 0.925 V and a half-wave potential of 0.867 V. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption spectroscopy results confirmed the presence of highly dispersed Fe single atoms in Fe SAs/HNCSs-800. The results of experiments and theoretical calculations show that the single-atom dispersed Fe-N<sub>4</sub> serve as the ORR active sites, and the adjacent C defects can effectively regulate the electronic structure of Fe atoms and improve the electrocatalytic ORR activity.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hollow N-doped carbon spheres with anchored single-atom Fe sites for efficient electrocatalytic oxygen reduction\",\"authors\":\"Min-min WANG ,&nbsp;Chao FENG ,&nbsp;Yun-qi LIU ,&nbsp;Yuan PAN\",\"doi\":\"10.1016/S1872-5813(22)60067-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We anchored atomically dispersed Fe-N<sub>4</sub> sites on hollow N-doped carbon spheres (Fe SAs/HNCSs-800) for electrocatalytic ORR; the obtained material exhibited electrocatalytic activity and stability comparable to that of commercial Pt/C, with an onset potential of 0.925 V and a half-wave potential of 0.867 V. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption spectroscopy results confirmed the presence of highly dispersed Fe single atoms in Fe SAs/HNCSs-800. The results of experiments and theoretical calculations show that the single-atom dispersed Fe-N<sub>4</sub> serve as the ORR active sites, and the adjacent C defects can effectively regulate the electronic structure of Fe atoms and improve the electrocatalytic ORR activity.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581322600677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581322600677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

我们将原子分散的Fe-N4位点锚定在空心氮掺杂碳球(Fe-SAs/HNCSs-800)上,用于电催化ORR;所获得的材料表现出与商业Pt/C相当的电催化活性和稳定性,起始电位为0.925V,半波电位为0.867V。像差校正的高角度环形暗场扫描透射电子显微镜和X射线吸收光谱结果证实了在Fe-SAs/HNCS-800中存在高度分散的Fe单原子。实验和理论计算结果表明,单原子分散的Fe-N4作为ORR活性位点,相邻的C缺陷可以有效地调节Fe原子的电子结构,提高电催化ORR活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hollow N-doped carbon spheres with anchored single-atom Fe sites for efficient electrocatalytic oxygen reduction

We anchored atomically dispersed Fe-N4 sites on hollow N-doped carbon spheres (Fe SAs/HNCSs-800) for electrocatalytic ORR; the obtained material exhibited electrocatalytic activity and stability comparable to that of commercial Pt/C, with an onset potential of 0.925 V and a half-wave potential of 0.867 V. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption spectroscopy results confirmed the presence of highly dispersed Fe single atoms in Fe SAs/HNCSs-800. The results of experiments and theoretical calculations show that the single-atom dispersed Fe-N4 serve as the ORR active sites, and the adjacent C defects can effectively regulate the electronic structure of Fe atoms and improve the electrocatalytic ORR activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
期刊最新文献
Recent Contributions of Photoionization Mass Spectrometry in the Study of Typical Solid Fuel Pyrolysis Theoretical Study on the Pyrolysis Mechanism of the Lignin Dimer Model Compound Catalyzed by Alkaline Earth Metal Ions Ca2+ and Mg2+ Impact of B-site cations of MgX2O4 (X=Cr, Fe, Mn) spinels on the chemical looping oxidative dehydrogenation of ethane to ethylene Multi-site Co2P catalyst derived from soybean biomass for dehydrogenation of formic acid Effects of preparation methods on the performance of InZr/SAPO-34 composite catalysts for CO2 hydrogenation to light olefins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1