{"title":"具有基数约束的凸化多线性集:结构性质,嵌套情况和扩展","authors":"Rui Chen , Sanjeeb Dash , Oktay Günlük","doi":"10.1016/j.disopt.2023.100804","DOIUrl":null,"url":null,"abstract":"<div><p><span>The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of solutions of the standard linearization of this problem a multilinear set with cardinality constraints. We characterize a set of conditions on these multilinear terms (called </span><em>properness</em><span>) and observe that under these conditions the convex hull<span> description of the set is tractable via an extended formulation. We then give an explicit polyhedral description of the convex hull when the multilinear terms have a nested structure. Our description has an exponential number of inequalities which can be separated in polynomial time. Finally, we generalize these inequalities to obtain valid inequalities for the general case.</span></span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100804"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convexifying multilinear sets with cardinality constraints: Structural properties, nested case and extensions\",\"authors\":\"Rui Chen , Sanjeeb Dash , Oktay Günlük\",\"doi\":\"10.1016/j.disopt.2023.100804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of solutions of the standard linearization of this problem a multilinear set with cardinality constraints. We characterize a set of conditions on these multilinear terms (called </span><em>properness</em><span>) and observe that under these conditions the convex hull<span> description of the set is tractable via an extended formulation. We then give an explicit polyhedral description of the convex hull when the multilinear terms have a nested structure. Our description has an exponential number of inequalities which can be separated in polynomial time. Finally, we generalize these inequalities to obtain valid inequalities for the general case.</span></span></p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"50 \",\"pages\":\"Article 100804\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528623000464\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000464","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Convexifying multilinear sets with cardinality constraints: Structural properties, nested case and extensions
The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of solutions of the standard linearization of this problem a multilinear set with cardinality constraints. We characterize a set of conditions on these multilinear terms (called properness) and observe that under these conditions the convex hull description of the set is tractable via an extended formulation. We then give an explicit polyhedral description of the convex hull when the multilinear terms have a nested structure. Our description has an exponential number of inequalities which can be separated in polynomial time. Finally, we generalize these inequalities to obtain valid inequalities for the general case.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.