金属玻璃火花等离子烧结温度不均匀性的新实验策略

Huaping Ding , Xiaoqian Bao , Mao Zhang , Junsong Jin , Lei Deng , Kefu Yao , Atefeh Solouk , Pan Gong , Xinyun Wang
{"title":"金属玻璃火花等离子烧结温度不均匀性的新实验策略","authors":"Huaping Ding ,&nbsp;Xiaoqian Bao ,&nbsp;Mao Zhang ,&nbsp;Junsong Jin ,&nbsp;Lei Deng ,&nbsp;Kefu Yao ,&nbsp;Atefeh Solouk ,&nbsp;Pan Gong ,&nbsp;Xinyun Wang","doi":"10.1016/j.apmate.2023.100109","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the importance of temperature distribution in spark plasma sintering of metallic glasses, its quantification has been experimentally laborious. This work proposes an experimental strategy to determine the sintering temperature by establishing a quantitative relationship between the temperature-thermal signal. We reproduced the thermal profiles of spark plasma sintering by isothermal annealing and found a correlation between annealing temperature and isothermal crystallization time. This strong correlation indicates the temperature-dependent structural evolution of glassy powders. Using isothermal crystallization time as the measuring gauge, we correlated the annealing temperature to the sintering temperature and obtained the sample temperature map. The sample temperature is at least 19 ​°C higher than the nominal temperature of 425 ​°C measured by the thermocouple. Meanwhile, the sample temperature shows a hump-shaped pattern closely correlated with the current density. The maximum temperature of 453 ​°C occurs on the sample/punches contact surfaces. Temperature heterogeneity within the sample induces diverse microstructures and porous structures. We elucidate that the temperature inhomogeneity is intrinsic, given the presence of contact interfaces. Contact resistances affect the current distribution and heat transfer, resulting in a larger temperature gradient than the traditional powder metallurgy process.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Novel experimental strategy towards temperature inhomogeneity during spark plasma sintering of metallic glasses\",\"authors\":\"Huaping Ding ,&nbsp;Xiaoqian Bao ,&nbsp;Mao Zhang ,&nbsp;Junsong Jin ,&nbsp;Lei Deng ,&nbsp;Kefu Yao ,&nbsp;Atefeh Solouk ,&nbsp;Pan Gong ,&nbsp;Xinyun Wang\",\"doi\":\"10.1016/j.apmate.2023.100109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite the importance of temperature distribution in spark plasma sintering of metallic glasses, its quantification has been experimentally laborious. This work proposes an experimental strategy to determine the sintering temperature by establishing a quantitative relationship between the temperature-thermal signal. We reproduced the thermal profiles of spark plasma sintering by isothermal annealing and found a correlation between annealing temperature and isothermal crystallization time. This strong correlation indicates the temperature-dependent structural evolution of glassy powders. Using isothermal crystallization time as the measuring gauge, we correlated the annealing temperature to the sintering temperature and obtained the sample temperature map. The sample temperature is at least 19 ​°C higher than the nominal temperature of 425 ​°C measured by the thermocouple. Meanwhile, the sample temperature shows a hump-shaped pattern closely correlated with the current density. The maximum temperature of 453 ​°C occurs on the sample/punches contact surfaces. Temperature heterogeneity within the sample induces diverse microstructures and porous structures. We elucidate that the temperature inhomogeneity is intrinsic, given the presence of contact interfaces. Contact resistances affect the current distribution and heat transfer, resulting in a larger temperature gradient than the traditional powder metallurgy process.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X23000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

尽管温度分布在金属玻璃的火花等离子体烧结中很重要,但其定量一直是实验上的难点。这项工作提出了一种实验策略,通过建立温度-热信号之间的定量关系来确定烧结温度。我们通过等温退火再现了火花等离子体烧结的热分布,并发现退火温度和等温结晶时间之间存在相关性。这种强烈的相关性表明玻璃状粉末的结构演变与温度有关。以等温结晶时间为测量尺度,将退火温度与烧结温度进行了关联,得到了样品温度图。样品温度至少为19​高于425的标称温度°C​通过热电偶测量的°C。同时,样品温度呈现出与电流密度密切相关的驼峰状模式。最高温度453​样品/冲头的接触表面温度为°C。样品内的温度不均匀性导致不同的微观结构和多孔结构。我们阐明,考虑到接触界面的存在,温度不均匀性是固有的。接触电阻影响电流分布和传热,导致比传统粉末冶金工艺更大的温度梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel experimental strategy towards temperature inhomogeneity during spark plasma sintering of metallic glasses

Despite the importance of temperature distribution in spark plasma sintering of metallic glasses, its quantification has been experimentally laborious. This work proposes an experimental strategy to determine the sintering temperature by establishing a quantitative relationship between the temperature-thermal signal. We reproduced the thermal profiles of spark plasma sintering by isothermal annealing and found a correlation between annealing temperature and isothermal crystallization time. This strong correlation indicates the temperature-dependent structural evolution of glassy powders. Using isothermal crystallization time as the measuring gauge, we correlated the annealing temperature to the sintering temperature and obtained the sample temperature map. The sample temperature is at least 19 ​°C higher than the nominal temperature of 425 ​°C measured by the thermocouple. Meanwhile, the sample temperature shows a hump-shaped pattern closely correlated with the current density. The maximum temperature of 453 ​°C occurs on the sample/punches contact surfaces. Temperature heterogeneity within the sample induces diverse microstructures and porous structures. We elucidate that the temperature inhomogeneity is intrinsic, given the presence of contact interfaces. Contact resistances affect the current distribution and heat transfer, resulting in a larger temperature gradient than the traditional powder metallurgy process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1