揭示了feconialti型高熵合金中l12结构纳米沉淀物的独特双功能

Jianyang Zhang , Zhankun Zhao , Qian Li , Junhua Luan , Chain-Tsuan Liu , Yilu Zhao , Tao Yang
{"title":"揭示了feconialti型高熵合金中l12结构纳米沉淀物的独特双功能","authors":"Jianyang Zhang ,&nbsp;Zhankun Zhao ,&nbsp;Qian Li ,&nbsp;Junhua Luan ,&nbsp;Chain-Tsuan Liu ,&nbsp;Yilu Zhao ,&nbsp;Tao Yang","doi":"10.1016/j.apmate.2023.100113","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoprecipitation strengthening has been widely adopted as an effective way to design high-strength alloys, which generally leads to the loss of ductility. Here we unveil the unique bifunctionality of L1<sub>2</sub>-structured nanoprecipitates in a FeCoNiAlTi-type high entropy alloy , enabling the combined increase of tensile strength and ductility. Results show that as-quenched precipitate-free matrix alloys undergo thermally-induced martensite transformation and form the body-centered cubic martensite phase with limited tensile ductility. In strong contrast, when introducing the dense coherent L1<sub>2</sub>-type nanoprecipitates, the face-centered cubic matrix is temporarily stabilized, which in turn promotes the microbands-induced plasticity associated with stress-induced martensite transformation upon deformation. This allows us to achieve significantly improved work hardening capability and excellent plastic deformation stability at a high-strength level. These new findings reshape our understanding of the precipitation strengthening and could provide useful guidance for developing high-performance alloys by regulating the coherent nanoprecipitate and martensitic phase transformation.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Unveiling the unique bifunctionality of L12-structured nanoprecipitates in a FeCoNiAlTi-type high-entropy alloy\",\"authors\":\"Jianyang Zhang ,&nbsp;Zhankun Zhao ,&nbsp;Qian Li ,&nbsp;Junhua Luan ,&nbsp;Chain-Tsuan Liu ,&nbsp;Yilu Zhao ,&nbsp;Tao Yang\",\"doi\":\"10.1016/j.apmate.2023.100113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanoprecipitation strengthening has been widely adopted as an effective way to design high-strength alloys, which generally leads to the loss of ductility. Here we unveil the unique bifunctionality of L1<sub>2</sub>-structured nanoprecipitates in a FeCoNiAlTi-type high entropy alloy , enabling the combined increase of tensile strength and ductility. Results show that as-quenched precipitate-free matrix alloys undergo thermally-induced martensite transformation and form the body-centered cubic martensite phase with limited tensile ductility. In strong contrast, when introducing the dense coherent L1<sub>2</sub>-type nanoprecipitates, the face-centered cubic matrix is temporarily stabilized, which in turn promotes the microbands-induced plasticity associated with stress-induced martensite transformation upon deformation. This allows us to achieve significantly improved work hardening capability and excellent plastic deformation stability at a high-strength level. These new findings reshape our understanding of the precipitation strengthening and could provide useful guidance for developing high-performance alloys by regulating the coherent nanoprecipitate and martensitic phase transformation.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X23000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

纳米沉淀强化是设计高强度合金的一种有效方法,通常会导致延展性的损失。在这里,我们揭示了FeCoNiAlTi型高熵合金中L12结构纳米沉淀物的独特双功能性,使拉伸强度和延展性得以共同提高。结果表明,无沉淀基体合金在淬火后发生热致马氏体相变,形成了具有有限拉伸延展性的体心立方马氏体相。与此形成鲜明对比的是,当引入致密的相干L12型纳米沉淀物时,面心立方基体暂时稳定,这反过来促进了与变形时应力诱导的马氏体转变相关的微带诱导塑性。这使我们能够在高强度水平上实现显著提高的加工硬化能力和优异的塑性变形稳定性。这些新发现重塑了我们对沉淀强化的理解,并可以通过调节相干纳米沉淀和马氏体相变,为开发高性能合金提供有用的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the unique bifunctionality of L12-structured nanoprecipitates in a FeCoNiAlTi-type high-entropy alloy

Nanoprecipitation strengthening has been widely adopted as an effective way to design high-strength alloys, which generally leads to the loss of ductility. Here we unveil the unique bifunctionality of L12-structured nanoprecipitates in a FeCoNiAlTi-type high entropy alloy , enabling the combined increase of tensile strength and ductility. Results show that as-quenched precipitate-free matrix alloys undergo thermally-induced martensite transformation and form the body-centered cubic martensite phase with limited tensile ductility. In strong contrast, when introducing the dense coherent L12-type nanoprecipitates, the face-centered cubic matrix is temporarily stabilized, which in turn promotes the microbands-induced plasticity associated with stress-induced martensite transformation upon deformation. This allows us to achieve significantly improved work hardening capability and excellent plastic deformation stability at a high-strength level. These new findings reshape our understanding of the precipitation strengthening and could provide useful guidance for developing high-performance alloys by regulating the coherent nanoprecipitate and martensitic phase transformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1