Konstantinos Kaparis , Adam N. Letchford , Ioannis Mourtos
{"title":"论切多面体和图的次形","authors":"Konstantinos Kaparis , Adam N. Letchford , Ioannis Mourtos","doi":"10.1016/j.disopt.2023.100807","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>max-cut problem</em> is a fundamental and much-studied <span><math><mi>NP</mi></math></span><span>-hard combinatorial optimisation problem<span>, with a wide range of applications. Several authors have shown that the max-cut problem can be solved in polynomial time if the underlying graph is free of certain </span></span><em>minors</em><span>. We give a polyhedral counterpart of these results. In particular, we show that, if a family of valid inequalities for the cut polytope satisfies certain conditions, then there is an associated minor-closed family of graphs on which the max-cut problem can be solved efficiently.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100807"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On cut polytopes and graph minors\",\"authors\":\"Konstantinos Kaparis , Adam N. Letchford , Ioannis Mourtos\",\"doi\":\"10.1016/j.disopt.2023.100807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>max-cut problem</em> is a fundamental and much-studied <span><math><mi>NP</mi></math></span><span>-hard combinatorial optimisation problem<span>, with a wide range of applications. Several authors have shown that the max-cut problem can be solved in polynomial time if the underlying graph is free of certain </span></span><em>minors</em><span>. We give a polyhedral counterpart of these results. In particular, we show that, if a family of valid inequalities for the cut polytope satisfies certain conditions, then there is an associated minor-closed family of graphs on which the max-cut problem can be solved efficiently.</span></p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"50 \",\"pages\":\"Article 100807\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157252862300049X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157252862300049X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The max-cut problem is a fundamental and much-studied -hard combinatorial optimisation problem, with a wide range of applications. Several authors have shown that the max-cut problem can be solved in polynomial time if the underlying graph is free of certain minors. We give a polyhedral counterpart of these results. In particular, we show that, if a family of valid inequalities for the cut polytope satisfies certain conditions, then there is an associated minor-closed family of graphs on which the max-cut problem can be solved efficiently.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.