非原位ZrB2杂化SiC-AlN纳米陶瓷复合材料的跨尺度微结构设计

Aidong Xia , Buhao Zhang , Jie Yin , Xiao Chen , Sea-Hoon Lee , Xuejian Liu , Zhengren Huang
{"title":"非原位ZrB2杂化SiC-AlN纳米陶瓷复合材料的跨尺度微结构设计","authors":"Aidong Xia ,&nbsp;Buhao Zhang ,&nbsp;Jie Yin ,&nbsp;Xiao Chen ,&nbsp;Sea-Hoon Lee ,&nbsp;Xuejian Liu ,&nbsp;Zhengren Huang","doi":"10.1016/j.apmate.2022.100063","DOIUrl":null,"url":null,"abstract":"<div><p>ZrB<sub>2</sub>/SiC–AlN nanoceramic composites were densified at 1950 ​°C by hot pressing using an organic-precursor-derived SiC and commercially available AlN and ZrB<sub>2</sub>. A cross-scale microstructure was constructed by distributing the ZrB<sub>2</sub> secondary phase (∼421 ​nm) within the SiC–AlN solid solution matrix. The substructure of the SiC–AlN matrix was agglomerated by nanograins with an average size of only 62 ​nm. ZrB<sub>2</sub> connected around the majority of pores within the SiC–AlN matrix and contributed to the formation of numerous weak interfacial bonding, resulting in improved strength and toughness. The highest flexural strength and fracture toughness of 579 ​± ​52 ​MPa and 6.7 ​± ​0.1 ​MPa ​m<sup>1/2</sup> were obtained from a 10 ​wt%-ZrB<sub>2</sub>/SiC–AlN sample, respectively. The high concentration of grain boundaries of the ZrB<sub>2</sub>/SiC–AlN nanoceramic composites resulted in heat insulation characteristic. The thermal diffusivity and conductivity were 3.6 ​mm<sup>2</sup>⋅s<sup>−1</sup> and 14.3 ​W·(m·K)<sup>−1</sup> at 1400 ​°C, respectively, while the electrical resistivity was 3.9×10<sup>3</sup> ​Ω·cm for the 10 ​wt%-ZrB<sub>2</sub>/SiC–AlN sample.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cross-scale microstructure design of precursor-derived SiC-AlN nanoceramic composites hybrid with ex-situ ZrB2\",\"authors\":\"Aidong Xia ,&nbsp;Buhao Zhang ,&nbsp;Jie Yin ,&nbsp;Xiao Chen ,&nbsp;Sea-Hoon Lee ,&nbsp;Xuejian Liu ,&nbsp;Zhengren Huang\",\"doi\":\"10.1016/j.apmate.2022.100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>ZrB<sub>2</sub>/SiC–AlN nanoceramic composites were densified at 1950 ​°C by hot pressing using an organic-precursor-derived SiC and commercially available AlN and ZrB<sub>2</sub>. A cross-scale microstructure was constructed by distributing the ZrB<sub>2</sub> secondary phase (∼421 ​nm) within the SiC–AlN solid solution matrix. The substructure of the SiC–AlN matrix was agglomerated by nanograins with an average size of only 62 ​nm. ZrB<sub>2</sub> connected around the majority of pores within the SiC–AlN matrix and contributed to the formation of numerous weak interfacial bonding, resulting in improved strength and toughness. The highest flexural strength and fracture toughness of 579 ​± ​52 ​MPa and 6.7 ​± ​0.1 ​MPa ​m<sup>1/2</sup> were obtained from a 10 ​wt%-ZrB<sub>2</sub>/SiC–AlN sample, respectively. The high concentration of grain boundaries of the ZrB<sub>2</sub>/SiC–AlN nanoceramic composites resulted in heat insulation characteristic. The thermal diffusivity and conductivity were 3.6 ​mm<sup>2</sup>⋅s<sup>−1</sup> and 14.3 ​W·(m·K)<sup>−1</sup> at 1400 ​°C, respectively, while the electrical resistivity was 3.9×10<sup>3</sup> ​Ω·cm for the 10 ​wt%-ZrB<sub>2</sub>/SiC–AlN sample.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X2200046X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X2200046X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

ZrB2/SiC–AlN纳米陶瓷复合材料于1950年致密化​通过使用有机前体衍生的SiC和市售的AlN和ZrB2热压在°C。通过分布ZrB2二次相(~421​nm)。SiC–AlN基体的亚结构由平均尺寸仅为62的纳米颗粒团聚​nm。ZrB2连接在SiC–AlN基体内的大多数孔隙周围,有助于形成许多弱界面结合,从而提高强度和韧性。最高弯曲强度和断裂韧性为579​±​52​MPa和6.7​±​0.1​兆帕​m1/2是从10​wt%-ZrB2/SiC–AlN样品。ZrB2/SiC–AlN纳米陶瓷复合材料晶界浓度高,具有良好的隔热性能。热扩散率和电导率为3.6​mm2·s−1和14.3​1400时W·(m·K)−1​°C,而电阻率为3.9×103​Ω·cm用于10​wt%-ZrB2/SiC–AlN样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-scale microstructure design of precursor-derived SiC-AlN nanoceramic composites hybrid with ex-situ ZrB2

ZrB2/SiC–AlN nanoceramic composites were densified at 1950 ​°C by hot pressing using an organic-precursor-derived SiC and commercially available AlN and ZrB2. A cross-scale microstructure was constructed by distributing the ZrB2 secondary phase (∼421 ​nm) within the SiC–AlN solid solution matrix. The substructure of the SiC–AlN matrix was agglomerated by nanograins with an average size of only 62 ​nm. ZrB2 connected around the majority of pores within the SiC–AlN matrix and contributed to the formation of numerous weak interfacial bonding, resulting in improved strength and toughness. The highest flexural strength and fracture toughness of 579 ​± ​52 ​MPa and 6.7 ​± ​0.1 ​MPa ​m1/2 were obtained from a 10 ​wt%-ZrB2/SiC–AlN sample, respectively. The high concentration of grain boundaries of the ZrB2/SiC–AlN nanoceramic composites resulted in heat insulation characteristic. The thermal diffusivity and conductivity were 3.6 ​mm2⋅s−1 and 14.3 ​W·(m·K)−1 at 1400 ​°C, respectively, while the electrical resistivity was 3.9×103 ​Ω·cm for the 10 ​wt%-ZrB2/SiC–AlN sample.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1