Mohammad Tarique , Abdelmoneim H. Ali , Jaleel Kizhakkayil , Ren-You Gan , Shao-Quan Liu , Afaf Kamal-Eldin , Mutamed Ayyash
{"title":"研究德布吕氏乳杆菌和鼠李糖乳杆菌产生的胞外多糖的生物活性和益生元潜力:对发酵乳中肠道菌群调节和流变特性的影响","authors":"Mohammad Tarique , Abdelmoneim H. Ali , Jaleel Kizhakkayil , Ren-You Gan , Shao-Quan Liu , Afaf Kamal-Eldin , Mutamed Ayyash","doi":"10.1016/j.fhfh.2023.100162","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this research was to explore the functional qualities of two EPSs produced by recently discovered LAB (<em>Lactobacillus delbrueckii</em> (EPS-LB3) and <em>Lacticaseibacillus rhamnosus</em> (EPS-MLB3)) that have potential probiotic benefits. The study involved evaluating their biological characteristics, such as their antioxidant, antidiabetic, antimicrobial, antibiofilm, and antiproliferative activities at various concentrations, as well as investigating their effects on the gut microbiome through <em>in vitro</em> fecal fermentation. Moreover, the study analyzed the rheological properties of the EPSs in fermented bovine milk. The average molecular weights of the extracted EPS were 3762.43 kDa and 1272.19 kDa with monosaccharide compositions of Glu:Rib:Man:Xyl (1.0:16.4:6.6:6.5) and Rib:Man:Xyl:GA:Ara (7.1:1.6:4.8:1.0:9.0) for EPS-LB3 and EPS-MLB3, respectively. EPS-LB3 and EPS-MLB3 at 250 mg/L showed scavenging rates of 34.0 ± 1.7 % and 37.5 ± 1.1 % for DPPH, 47.3 ± 0.8 % and 56.6 ± 0.7 % for ABTS, 38.3 ± 0.5 % and 43.5 ± 0.6 % for SD, 53.9 ± 0.1 % and 54.7 ± 0.1 % for SAS, 10.6 ± 0.1 % and 10.7 ± 0.2 % for HP, 88.8 ± 0.1 % and 84.8 ± 0.5 % for HRS, 80.0 ± 1.4 % and 84.5 ± 0.8 % for MC, as well as 60.6 ± 1.7 % and 58.1 ± 0.9 % for Lipid Oxidation, respectively, suggesting good antioxidant properties. They also exhibited antimicrobial and anti-biofilm effects against several foodborne pathogens, and antiproliferative activities against cancer cell lines. Additionally, the utilization of EPS by several probiotics indicated the prebiotic nature of EPS. The effect of both EPS on gut microbiome by fecal fermentation revealed that these EPS promoted selective bacteria like <em>Faecalibacterium prausnitzii</em> and <em>Ruminococcus bromii</em> in the gut, which are responsible for carbohydrate metabolism and short-chain fatty acid production.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"4 ","pages":"Article 100162"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the biological activities and prebiotic potential of exopolysaccharides Produced by Lactobacillus delbrueckii and Lacticaseibacillus rhamnosus: Implications for gut microbiota modulation and rheological properties in fermented milk\",\"authors\":\"Mohammad Tarique , Abdelmoneim H. Ali , Jaleel Kizhakkayil , Ren-You Gan , Shao-Quan Liu , Afaf Kamal-Eldin , Mutamed Ayyash\",\"doi\":\"10.1016/j.fhfh.2023.100162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this research was to explore the functional qualities of two EPSs produced by recently discovered LAB (<em>Lactobacillus delbrueckii</em> (EPS-LB3) and <em>Lacticaseibacillus rhamnosus</em> (EPS-MLB3)) that have potential probiotic benefits. The study involved evaluating their biological characteristics, such as their antioxidant, antidiabetic, antimicrobial, antibiofilm, and antiproliferative activities at various concentrations, as well as investigating their effects on the gut microbiome through <em>in vitro</em> fecal fermentation. Moreover, the study analyzed the rheological properties of the EPSs in fermented bovine milk. The average molecular weights of the extracted EPS were 3762.43 kDa and 1272.19 kDa with monosaccharide compositions of Glu:Rib:Man:Xyl (1.0:16.4:6.6:6.5) and Rib:Man:Xyl:GA:Ara (7.1:1.6:4.8:1.0:9.0) for EPS-LB3 and EPS-MLB3, respectively. EPS-LB3 and EPS-MLB3 at 250 mg/L showed scavenging rates of 34.0 ± 1.7 % and 37.5 ± 1.1 % for DPPH, 47.3 ± 0.8 % and 56.6 ± 0.7 % for ABTS, 38.3 ± 0.5 % and 43.5 ± 0.6 % for SD, 53.9 ± 0.1 % and 54.7 ± 0.1 % for SAS, 10.6 ± 0.1 % and 10.7 ± 0.2 % for HP, 88.8 ± 0.1 % and 84.8 ± 0.5 % for HRS, 80.0 ± 1.4 % and 84.5 ± 0.8 % for MC, as well as 60.6 ± 1.7 % and 58.1 ± 0.9 % for Lipid Oxidation, respectively, suggesting good antioxidant properties. They also exhibited antimicrobial and anti-biofilm effects against several foodborne pathogens, and antiproliferative activities against cancer cell lines. Additionally, the utilization of EPS by several probiotics indicated the prebiotic nature of EPS. The effect of both EPS on gut microbiome by fecal fermentation revealed that these EPS promoted selective bacteria like <em>Faecalibacterium prausnitzii</em> and <em>Ruminococcus bromii</em> in the gut, which are responsible for carbohydrate metabolism and short-chain fatty acid production.</p></div>\",\"PeriodicalId\":12385,\"journal\":{\"name\":\"Food Hydrocolloids for Health\",\"volume\":\"4 \",\"pages\":\"Article 100162\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids for Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667025923000468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids for Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667025923000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Investigating the biological activities and prebiotic potential of exopolysaccharides Produced by Lactobacillus delbrueckii and Lacticaseibacillus rhamnosus: Implications for gut microbiota modulation and rheological properties in fermented milk
The objective of this research was to explore the functional qualities of two EPSs produced by recently discovered LAB (Lactobacillus delbrueckii (EPS-LB3) and Lacticaseibacillus rhamnosus (EPS-MLB3)) that have potential probiotic benefits. The study involved evaluating their biological characteristics, such as their antioxidant, antidiabetic, antimicrobial, antibiofilm, and antiproliferative activities at various concentrations, as well as investigating their effects on the gut microbiome through in vitro fecal fermentation. Moreover, the study analyzed the rheological properties of the EPSs in fermented bovine milk. The average molecular weights of the extracted EPS were 3762.43 kDa and 1272.19 kDa with monosaccharide compositions of Glu:Rib:Man:Xyl (1.0:16.4:6.6:6.5) and Rib:Man:Xyl:GA:Ara (7.1:1.6:4.8:1.0:9.0) for EPS-LB3 and EPS-MLB3, respectively. EPS-LB3 and EPS-MLB3 at 250 mg/L showed scavenging rates of 34.0 ± 1.7 % and 37.5 ± 1.1 % for DPPH, 47.3 ± 0.8 % and 56.6 ± 0.7 % for ABTS, 38.3 ± 0.5 % and 43.5 ± 0.6 % for SD, 53.9 ± 0.1 % and 54.7 ± 0.1 % for SAS, 10.6 ± 0.1 % and 10.7 ± 0.2 % for HP, 88.8 ± 0.1 % and 84.8 ± 0.5 % for HRS, 80.0 ± 1.4 % and 84.5 ± 0.8 % for MC, as well as 60.6 ± 1.7 % and 58.1 ± 0.9 % for Lipid Oxidation, respectively, suggesting good antioxidant properties. They also exhibited antimicrobial and anti-biofilm effects against several foodborne pathogens, and antiproliferative activities against cancer cell lines. Additionally, the utilization of EPS by several probiotics indicated the prebiotic nature of EPS. The effect of both EPS on gut microbiome by fecal fermentation revealed that these EPS promoted selective bacteria like Faecalibacterium prausnitzii and Ruminococcus bromii in the gut, which are responsible for carbohydrate metabolism and short-chain fatty acid production.