Kang Chen , Shengyang Yuan , Shenxin Pan , Jie Ma , Xianfeng Liu
{"title":"基于能量的全风化红泥岩安定特性表征","authors":"Kang Chen , Shengyang Yuan , Shenxin Pan , Jie Ma , Xianfeng Liu","doi":"10.1016/j.sandf.2023.101360","DOIUrl":null,"url":null,"abstract":"<div><p>Weathered Red mudstone is widely distributed in Sichuan basin. The compacted weathered red mudstone has been used as subgrade fill materials of high-speed railway in southwestern of China. Dynamic responses of such materials under cyclic loading are critical to long-term stability of subgrade. Shakedown concept is widely employed in characterizing the permanent deformation behavior of soils. According to the evolution of axial strain (Werkmeister’s theory) or unit dissipated energy (Tao’s theory) with loading cycles, the behavior of unbound granular materials can be classified into three categories: plastic shakedown, plastic creep and incremental collapse. However, both theories are more suitable for the unbound granular materials with some limitations when used to separate the plastic creep and incremental collapse behavior. To overcome the limitations of the current theories, 26 cyclic triaxial tests were conducted on a saturated fully weathered red mudstone (SFWRM) to study the evolution of axial strain and unit dissipated energy during cyclic loading. A clear dependency of axial strain, axial strain rate on the unit dissipated energy level under various cyclic stress states were observed. A new criterion which is based on the responses of unit dissipated energy with cyclic stress ratio, was proposed to determine the limit between plastic creep and incremental collapse. Comparing with Werkmeister’s criterion and Tao’s criterion, the proposed criterion showed a better performance in identifying the incremental collapse behavior of the SFWRM.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-based insight into characterization of shakedown behavior of fully weathered red mudstone\",\"authors\":\"Kang Chen , Shengyang Yuan , Shenxin Pan , Jie Ma , Xianfeng Liu\",\"doi\":\"10.1016/j.sandf.2023.101360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Weathered Red mudstone is widely distributed in Sichuan basin. The compacted weathered red mudstone has been used as subgrade fill materials of high-speed railway in southwestern of China. Dynamic responses of such materials under cyclic loading are critical to long-term stability of subgrade. Shakedown concept is widely employed in characterizing the permanent deformation behavior of soils. According to the evolution of axial strain (Werkmeister’s theory) or unit dissipated energy (Tao’s theory) with loading cycles, the behavior of unbound granular materials can be classified into three categories: plastic shakedown, plastic creep and incremental collapse. However, both theories are more suitable for the unbound granular materials with some limitations when used to separate the plastic creep and incremental collapse behavior. To overcome the limitations of the current theories, 26 cyclic triaxial tests were conducted on a saturated fully weathered red mudstone (SFWRM) to study the evolution of axial strain and unit dissipated energy during cyclic loading. A clear dependency of axial strain, axial strain rate on the unit dissipated energy level under various cyclic stress states were observed. A new criterion which is based on the responses of unit dissipated energy with cyclic stress ratio, was proposed to determine the limit between plastic creep and incremental collapse. Comparing with Werkmeister’s criterion and Tao’s criterion, the proposed criterion showed a better performance in identifying the incremental collapse behavior of the SFWRM.</p></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080623000896\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080623000896","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Energy-based insight into characterization of shakedown behavior of fully weathered red mudstone
Weathered Red mudstone is widely distributed in Sichuan basin. The compacted weathered red mudstone has been used as subgrade fill materials of high-speed railway in southwestern of China. Dynamic responses of such materials under cyclic loading are critical to long-term stability of subgrade. Shakedown concept is widely employed in characterizing the permanent deformation behavior of soils. According to the evolution of axial strain (Werkmeister’s theory) or unit dissipated energy (Tao’s theory) with loading cycles, the behavior of unbound granular materials can be classified into three categories: plastic shakedown, plastic creep and incremental collapse. However, both theories are more suitable for the unbound granular materials with some limitations when used to separate the plastic creep and incremental collapse behavior. To overcome the limitations of the current theories, 26 cyclic triaxial tests were conducted on a saturated fully weathered red mudstone (SFWRM) to study the evolution of axial strain and unit dissipated energy during cyclic loading. A clear dependency of axial strain, axial strain rate on the unit dissipated energy level under various cyclic stress states were observed. A new criterion which is based on the responses of unit dissipated energy with cyclic stress ratio, was proposed to determine the limit between plastic creep and incremental collapse. Comparing with Werkmeister’s criterion and Tao’s criterion, the proposed criterion showed a better performance in identifying the incremental collapse behavior of the SFWRM.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.