{"title":"海水中聚对苯二甲酸乙二醇酯(PET)和聚丙烯(PP)塑料的降解","authors":"Meixin Guan , Hui Jin , Wenwen Wei , Mi Yan","doi":"10.1016/j.decarb.2023.100006","DOIUrl":null,"url":null,"abstract":"<div><p>The world's marine litter consists mainly of plastic, and 99% of it does not float on the surface of the sea but on the seabed. The plastic carbon footprint necessarily includes the extraction or manufacture of raw materials, the conversion process, the distribution of products, the consumption of specific types of products and the disposal of the final product, as all these stages release carbon into the atmosphere. This work, inspired by marine microplastics and investigates how plastic waste is degraded and transformed in high-pressure, low-temperature seawater, this paper investigates the corrosion of polyethylene terephthalate (PET) and polypropylene (PP) plastics in seawater at high-pressure, using artificial seawater temperatures to simulate ocean temperatures of approximately 4 °C and time settings of 1 day–7 days. The results show that increasing the time enhances the degradation of the plastics and that changing the pressure has little effect on the degradation effect. Understanding its degradation in seawater can help us to better treat plastic waste and thus reduce the carbon footprint of the disposal process.</p></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"1 ","pages":"Article 100006"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of polyethylene terephthalate (PET) and polypropylene (PP) plastics in seawater\",\"authors\":\"Meixin Guan , Hui Jin , Wenwen Wei , Mi Yan\",\"doi\":\"10.1016/j.decarb.2023.100006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The world's marine litter consists mainly of plastic, and 99% of it does not float on the surface of the sea but on the seabed. The plastic carbon footprint necessarily includes the extraction or manufacture of raw materials, the conversion process, the distribution of products, the consumption of specific types of products and the disposal of the final product, as all these stages release carbon into the atmosphere. This work, inspired by marine microplastics and investigates how plastic waste is degraded and transformed in high-pressure, low-temperature seawater, this paper investigates the corrosion of polyethylene terephthalate (PET) and polypropylene (PP) plastics in seawater at high-pressure, using artificial seawater temperatures to simulate ocean temperatures of approximately 4 °C and time settings of 1 day–7 days. The results show that increasing the time enhances the degradation of the plastics and that changing the pressure has little effect on the degradation effect. Understanding its degradation in seawater can help us to better treat plastic waste and thus reduce the carbon footprint of the disposal process.</p></div>\",\"PeriodicalId\":100356,\"journal\":{\"name\":\"DeCarbon\",\"volume\":\"1 \",\"pages\":\"Article 100006\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DeCarbon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949881323000069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCarbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949881323000069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Degradation of polyethylene terephthalate (PET) and polypropylene (PP) plastics in seawater
The world's marine litter consists mainly of plastic, and 99% of it does not float on the surface of the sea but on the seabed. The plastic carbon footprint necessarily includes the extraction or manufacture of raw materials, the conversion process, the distribution of products, the consumption of specific types of products and the disposal of the final product, as all these stages release carbon into the atmosphere. This work, inspired by marine microplastics and investigates how plastic waste is degraded and transformed in high-pressure, low-temperature seawater, this paper investigates the corrosion of polyethylene terephthalate (PET) and polypropylene (PP) plastics in seawater at high-pressure, using artificial seawater temperatures to simulate ocean temperatures of approximately 4 °C and time settings of 1 day–7 days. The results show that increasing the time enhances the degradation of the plastics and that changing the pressure has little effect on the degradation effect. Understanding its degradation in seawater can help us to better treat plastic waste and thus reduce the carbon footprint of the disposal process.