Sikang Yan , Alexander Schlüter , Erik Faust , Ralf Müller
{"title":"非均质材料循环疲劳相场模型中的构形力","authors":"Sikang Yan , Alexander Schlüter , Erik Faust , Ralf Müller","doi":"10.1016/j.finmec.2023.100239","DOIUrl":null,"url":null,"abstract":"<div><p>The phase field model - a powerful tool - has been well established to simulate the fatigue crack evolution behavior. However, it is still hard to understand how each energy component in the phase field model contributes to crack evolution since the phase field method is based on an energetic criterion. In this work, we borrow the concept of configurational forces and show a straightforward way to examine the energetic driving forces in the phase field fatigue model. Results show that different parts of the configurational forces provide different energetic contributions during crack propagation.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100239"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Configurational forces in a phase field model for the cyclic fatigue of heterogeneous materials\",\"authors\":\"Sikang Yan , Alexander Schlüter , Erik Faust , Ralf Müller\",\"doi\":\"10.1016/j.finmec.2023.100239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phase field model - a powerful tool - has been well established to simulate the fatigue crack evolution behavior. However, it is still hard to understand how each energy component in the phase field model contributes to crack evolution since the phase field method is based on an energetic criterion. In this work, we borrow the concept of configurational forces and show a straightforward way to examine the energetic driving forces in the phase field fatigue model. Results show that different parts of the configurational forces provide different energetic contributions during crack propagation.</p></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":\"13 \",\"pages\":\"Article 100239\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Configurational forces in a phase field model for the cyclic fatigue of heterogeneous materials
The phase field model - a powerful tool - has been well established to simulate the fatigue crack evolution behavior. However, it is still hard to understand how each energy component in the phase field model contributes to crack evolution since the phase field method is based on an energetic criterion. In this work, we borrow the concept of configurational forces and show a straightforward way to examine the energetic driving forces in the phase field fatigue model. Results show that different parts of the configurational forces provide different energetic contributions during crack propagation.