erachidia城市(摩洛哥东南部)干旱气候下住宅建筑能耗特征研究

H. Ajabli , L. Lairgi , A. Daya , R. Elotmani , K. Kandoussi , A. Zoubir
{"title":"erachidia城市(摩洛哥东南部)干旱气候下住宅建筑能耗特征研究","authors":"H. Ajabli ,&nbsp;L. Lairgi ,&nbsp;A. Daya ,&nbsp;R. Elotmani ,&nbsp;K. Kandoussi ,&nbsp;A. Zoubir","doi":"10.1016/j.mset.2022.10.008","DOIUrl":null,"url":null,"abstract":"<div><p>Energy efficiency in the building sector has attracted a great deal of interest in recent years; because it is seen as a potential solution to minimize the high energy consumption caused by the acceleration of the urbanization process. Several methodologies have been developed to assess the energy performance of buildings, including the energy signature, which is an empirical tool used to represent the real energy performance of buildings. Synthetic data of energy consumption of buildings are generated by ECOTECT simulation program, which is a class of energy models that uses characteristic data (dimensional, physical and location) of the building to predict energy consumption. The primary goal of this research is to examine how solar rays and occupants affect a residential building's energy signature in Errachidia, a city in the southeast of Morocco characterized by its arid climate. The results show that when solar radiation was taken into account, the outcomes of the building's intrinsic characteristics (a and b) enhanced the signature. The distinct response in energy use serves as justification. In fact, the solar radiation provides a significant improvement with an important <em>R<sup>2</sup></em> accuracy of about 0.999. Moreover, the introduction of the occupancy factor has a significant impact on energy savings and temperature fluctuations in energy consumption. The importance of parameter <em>b</em> related to the fixed loads of the building is more influenced by the occupancy factor. This opens up a new possibility for energy-saving studies in the case of an arid climate.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on the energy signature of a residential building in an arid climate of Errachidia city (South Eastern Morocco)\",\"authors\":\"H. Ajabli ,&nbsp;L. Lairgi ,&nbsp;A. Daya ,&nbsp;R. Elotmani ,&nbsp;K. Kandoussi ,&nbsp;A. Zoubir\",\"doi\":\"10.1016/j.mset.2022.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy efficiency in the building sector has attracted a great deal of interest in recent years; because it is seen as a potential solution to minimize the high energy consumption caused by the acceleration of the urbanization process. Several methodologies have been developed to assess the energy performance of buildings, including the energy signature, which is an empirical tool used to represent the real energy performance of buildings. Synthetic data of energy consumption of buildings are generated by ECOTECT simulation program, which is a class of energy models that uses characteristic data (dimensional, physical and location) of the building to predict energy consumption. The primary goal of this research is to examine how solar rays and occupants affect a residential building's energy signature in Errachidia, a city in the southeast of Morocco characterized by its arid climate. The results show that when solar radiation was taken into account, the outcomes of the building's intrinsic characteristics (a and b) enhanced the signature. The distinct response in energy use serves as justification. In fact, the solar radiation provides a significant improvement with an important <em>R<sup>2</sup></em> accuracy of about 0.999. Moreover, the introduction of the occupancy factor has a significant impact on energy savings and temperature fluctuations in energy consumption. The importance of parameter <em>b</em> related to the fixed loads of the building is more influenced by the occupancy factor. This opens up a new possibility for energy-saving studies in the case of an arid climate.</p></div>\",\"PeriodicalId\":18283,\"journal\":{\"name\":\"Materials Science for Energy Technologies\",\"volume\":\"6 \",\"pages\":\"Pages 1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science for Energy Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589299122000349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299122000349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

摘要

近年来,建筑部门的能源效率引起了人们的极大兴趣;因为它被视为一种潜在的解决方案,可以最大限度地减少城市化进程加速所造成的高能源消耗。已经开发了几种方法来评估建筑物的能源性能,包括能源特征,这是一种用于表示建筑物实际能源性能的经验工具。ECOTECT模拟程序生成建筑物能耗的综合数据,这是一类利用建筑物的特征数据(尺寸、物理和位置)来预测能耗的能源模型。这项研究的主要目标是研究太阳光线和居住者如何影响摩洛哥东南部以干旱气候为特征的埃拉奇迪亚市住宅楼的能源特征。结果表明,当考虑到太阳辐射时,建筑物固有特性(a和b)的结果增强了特征。能源使用方面的不同反应可以作为理由。事实上,太阳辐射提供了显著的改善,R2的重要精度约为0.999。此外,占用系数的引入对能源节约和能源消耗的温度波动有重大影响。与建筑物固定荷载相关的参数b的重要性更多地受到占用系数的影响。这为干旱气候下的节能研究开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the energy signature of a residential building in an arid climate of Errachidia city (South Eastern Morocco)

Energy efficiency in the building sector has attracted a great deal of interest in recent years; because it is seen as a potential solution to minimize the high energy consumption caused by the acceleration of the urbanization process. Several methodologies have been developed to assess the energy performance of buildings, including the energy signature, which is an empirical tool used to represent the real energy performance of buildings. Synthetic data of energy consumption of buildings are generated by ECOTECT simulation program, which is a class of energy models that uses characteristic data (dimensional, physical and location) of the building to predict energy consumption. The primary goal of this research is to examine how solar rays and occupants affect a residential building's energy signature in Errachidia, a city in the southeast of Morocco characterized by its arid climate. The results show that when solar radiation was taken into account, the outcomes of the building's intrinsic characteristics (a and b) enhanced the signature. The distinct response in energy use serves as justification. In fact, the solar radiation provides a significant improvement with an important R2 accuracy of about 0.999. Moreover, the introduction of the occupancy factor has a significant impact on energy savings and temperature fluctuations in energy consumption. The importance of parameter b related to the fixed loads of the building is more influenced by the occupancy factor. This opens up a new possibility for energy-saving studies in the case of an arid climate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
期刊最新文献
Li-S-B Glass-Ceramics: A Novel electrode materials for energy storage technology Selective hydrogenation of 1,3-butadiene to butenes on ceria-supported Pd, Ni and PdNi catalysts: Combined experimental and DFT outlook Compositing LaSrMnO3 perovskite and graphene oxide nanoribbons for highly stable asymmetric electrochemical supercapacitors Facile synthesis and electrochemical performance of bacterial cellulose/reduced graphene oxide/NiCo-layered double hydroxide composite film for self-standing supercapacitor electrode A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1