Fengjun Shi , SiSi Ma , Sen Liu , Rui Xin , Bo Chen , Wei Ye , Jing Sun
{"title":"一种新的细菌感染抗菌策略:镓基材料","authors":"Fengjun Shi , SiSi Ma , Sen Liu , Rui Xin , Bo Chen , Wei Ye , Jing Sun","doi":"10.1016/j.colcom.2023.100735","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial infections remain a significant challenge in clinical medicine, and pervasive bacterial contamination addressed is based on the rational use of biomedical antibacterial materials in the clinic. While antibiotics have been instrumental in mitigating the threat of bacterial infections, the overuse of antibiotics has led to the emergence of antibiotic-resistant bacteria, thus, there is an urgent need to explore alternative antimicrobial strategies. Gallium (Ga)-based materials hold tremendous potential due to their exceptional antimicrobial properties, which combine physical and chemical sterilization. Herein, we review the main antimicrobial mechanisms of Ga-based materials, including Fe metabolism inhibition, reactive oxygen species induced generation, and physical disruption. Additionally, we summarize the various functional applications of Ga-based antimicrobial materials. Finally, we present the future challenge and development of Ga-based antimicrobial materials.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"56 ","pages":"Article 100735"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel antimicrobial strategy for bacterial infections: Gallium-based materials\",\"authors\":\"Fengjun Shi , SiSi Ma , Sen Liu , Rui Xin , Bo Chen , Wei Ye , Jing Sun\",\"doi\":\"10.1016/j.colcom.2023.100735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bacterial infections remain a significant challenge in clinical medicine, and pervasive bacterial contamination addressed is based on the rational use of biomedical antibacterial materials in the clinic. While antibiotics have been instrumental in mitigating the threat of bacterial infections, the overuse of antibiotics has led to the emergence of antibiotic-resistant bacteria, thus, there is an urgent need to explore alternative antimicrobial strategies. Gallium (Ga)-based materials hold tremendous potential due to their exceptional antimicrobial properties, which combine physical and chemical sterilization. Herein, we review the main antimicrobial mechanisms of Ga-based materials, including Fe metabolism inhibition, reactive oxygen species induced generation, and physical disruption. Additionally, we summarize the various functional applications of Ga-based antimicrobial materials. Finally, we present the future challenge and development of Ga-based antimicrobial materials.</p></div>\",\"PeriodicalId\":10483,\"journal\":{\"name\":\"Colloid and Interface Science Communications\",\"volume\":\"56 \",\"pages\":\"Article 100735\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Interface Science Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215038223000420\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038223000420","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A novel antimicrobial strategy for bacterial infections: Gallium-based materials
Bacterial infections remain a significant challenge in clinical medicine, and pervasive bacterial contamination addressed is based on the rational use of biomedical antibacterial materials in the clinic. While antibiotics have been instrumental in mitigating the threat of bacterial infections, the overuse of antibiotics has led to the emergence of antibiotic-resistant bacteria, thus, there is an urgent need to explore alternative antimicrobial strategies. Gallium (Ga)-based materials hold tremendous potential due to their exceptional antimicrobial properties, which combine physical and chemical sterilization. Herein, we review the main antimicrobial mechanisms of Ga-based materials, including Fe metabolism inhibition, reactive oxygen species induced generation, and physical disruption. Additionally, we summarize the various functional applications of Ga-based antimicrobial materials. Finally, we present the future challenge and development of Ga-based antimicrobial materials.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.